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CHAPTER I

INTRODUCTION AND BACKGROUND

A. TIntroduction

The topic of high-intensity sound propagation has been mostly
limited to sound waves in fluids and solids (see Beyer [lO]*). Very
little has been done in the study of high-intensity sound propagation in
bulk porous materials. Studies of intense sound interaction with per-
forated sheets, thin sheets of porous materials, and Helmholtz resona-
tors have been done (for example, see Refs. 37, 48, 55, 86).

Recently the use of porous materials in jet engine inlets has
increased. At high intensities it has been observed that the impedance
of a porous material changes with sound level, i.e., the material be-
haves nonlinearly. An understanding of sound reflection from and propa-
gation in bulk porous materials has therefore become necessary. In this
study many experiments have been performed on air saturated, fibrous, and
expanded plastic porous materials. The materials have porosities in the
range 0.809<P< 0.985, where P is the porosity (the volume of air per
total volume), The emphasis of this study is on the experimental re-
sults and explanation of these results.

In this investigation a theoretical model for intense sound

propagation in very porous, rigid, air saturated, fibrous bulk ma-

*
References are listed alphabetically by author and referred to by

number at the end of this dissertation.



terials is developed. A separate empirical model is proposed to des-
cribe finite amplitude losses (inexplicable losses in linear theory) in
the porous material. Modeling of the reflection of high intensity

sound waves from the surface of porous materials was also carried out.
The reflection process is very complicated; both resistive and reactive
components can depend upon the particle velocity amplitude of the in-
coming wave. Experimental data obtained from measurements on a variety
of bulk porous materials are used to test the validity and limits of the
theoretical models.

After this introductory section, some background theory is
presented in the remainder of this chapter. First, a brief discussion
of the theories on low intensity sound propagation in porous materials
is used to put the theory of Chapter II in perspective. Second, a brief
summary of high-intensity sound propagation in ordinary fluids is pre-
sented. Third, past work on the reflection of high-intensity sound from
surfaces and thin sheets is described.

In Chapter II a high-intensity sound theory is presented.

The one-dimensional mass, momentum, and internal energy equations for a
nonlinearly behaving bulk porous material are derived. The resulting
equations are solved by perturbation. A single boundary condition is
used. The input signal is assumed to be a sinusoid which is distorted
by a second harmonic component. A mathematical approximation to model
the high-intensity impedance of semi-infinite materials is also pre-
sented. An empirical model is adapted from the nonlinear acoustics of

fluids to help describe the excess attenuation and approach to



saturation® of an intense sine wave in a porous material. The wvarious
theoretical results from Chapter 1I are compared to data in Chapter IV.

In Chapter III the devices and methods used in the experi-
ments are described. The devices are used to determine the porosity,
material structure, flow resistivity, acoustic impedance, and acoustic
propagation parameters (attenuation and phase speed). Data are pre-
sented in Chapter IV,

In Chapter IV the experimentally determined data are compared
to the theoretical results derived in Chapter II. The results of the
porosity and dc flow resistivity measurements are presented and then
used in the theory to predict the acoustical properties of the various
materials. In the linear region the propagation parameter test results
agreed with theoretical predictioﬁs in some cases and disagreed in other
cases. The perturbation theory was found to be a poor predictor of the
data at high intensities, porosities, and nonlinearities. As the
porosity was reduced the agreement between measurements and predictions
was better at higher intensities. The excess attenuation model predicts
the excess attenuation of the fundamental over a large range of sound
intensities, material nonlinearities, and porosities. Results of small-

signal impedance measurements on finite and effectively semi-infinite

*
Saturation occurs when the finite amplitude losses become so large that,

no matter how much energy enters a porous material, only a specific
amount of acoustic energy (saturation level) will arrive at some loca-
tion within the material. The saturation level depends upon the dis-

tance the wave travels, nonlinearity, and small-signal attenuation [81].



materials are presented and, in most cases, agree with theoretical pre-
dictions. Results of high-intensity impedance measurements for effec-
tively semi-infinite materials are presented and compared to the
mathematical approximation presented in Chapter II. The advantages

and problems of each model are discussed.

In Chapter V the investigation of acoustic waves in porous
materials is summarized, conclusions are discussed, and proposals for
future work are presented. The appendices include a theoretical analy-
sis of heat transfer in fibrous porous materials, assembly drawings of

some of the devices discussed in Chapter III, and computer programs.



B. Linear Theory

A review of the various theories of low-intensity propagation
in and impedance of porous materials is presented in this section.
The following discussion is intended to help orient the reader with
respect to the vast literature on porous materials and the present
study. The intent is not to cover all the literature but to give a
general view. High intensity effects are postponed to Section C of
this chapter. The linear theories are arranged in four categories based
on the model used. After discussion, each theory is related to the pres-
ent analysis. The four categories are the scattering model, the capil-
lary tube-fiber motion models, the rigid frame model, and the lumped
element model.

1. Scattering Model

Sound wave scattering from the fibers of the porous material is

an approach that has been employed with varying success. The approach
has the advantage that no empirical constants have to be determined
from measured data. One minor drawback is that the theory is developed
only for very porous fibrous materials.

In 1910 Sewell [72] applied this method to fibrous materials
containing a viscous gas. At that time there were no experimental re-
sults for comparisons. 1In 1970 Kozhin [42-44] reworked Sewell's theory,
but made no comparison with available experiments. These theories yield
predicted attenuations that greatly exceed the attenuations measured in

this study.



In 1970 Attenborough and Walker [3] published a scattering
theory for fibrous materials. They show accurate prediction of the ab-
sorption coefficient at frequencies above 500 Hz, accurate prediction of
the phase speed, and predicted attenuation exceeding measured attenua-
tion at all frequencies. The predicted acoustic impedance is high. The
theory includes both rigid and flexible porous materials. A more de-
tailed discussion is given in Ref. 77.

In 1976 Mechel [53,54] derived a long and complicated scat-
tering theory in which he includes the scattering of viscosity, thermal,
and density waves. He concluded that the theory was not as good a pre-
dictor as some of the empirically related theories, such as Delany and
Bazley's [25] analysis of Zwikker and Kosten's model [88] (discussed
later in this section).

Scattering theory cannot Be used to predict all the acoustical
properties of a fibrous porous material, but in many cases the theory is
adequate. In the present study, which is of high-intensity sound, this
theory is not applicable because of the assumption that particle dis-
placement is small in the porous material. It would be very difficult
to generalize scattering theory to make it apply to high-intensity waves.

2. Capillary Tube-Fiber Motion Models

Two types of models are discussed in this section. They are,
in most cases, intertwined with each other to such a degree that they
cannot be separated. Most of these models include material motion in
the acoustical analysis. The major difference between the models is
the manner in which the viscous and thermal properties of the material

are determined. In one case, the capillary tube model, the viscous and



thermal properties are defined by calculating the acoustical effects of
a large number of adjacent capillary tubes. 1In the other case, the flow
resistance model, the dc flow resistance of the material is used to de-
termine the viscous properties. In both cases, one or more empirical
factors must be included to match the theory to data. The following
review is presented as historically as possible.

The first attempt at theoretical analysis of the acoustical
properties of bulk porous materials was done by Rayleigh in 1883 [66].
He expanded his work in the second volume of his book [67]. Rayleigh
assumed that the porous material could be modeled as an array of packed
capillary tubes with the sound traveling axially along the tubes.

Porous material structures are actually much different from a simple
model of packed capillary tubes. He based his work on Kirchhoff's [41]
theory of viscosity and heat conduction effects on sound waves traveling
in circular tubes made of perfectly rigid and heat conducting walls.
Many others [6,8,11,25,73,74,88] have used Rayleigh's approach as a
basis for analysis and have used complicated schemes to predict experi-
mental data. Some of these theories are discussed here.

Adaptation of Rayleigh's theory (see, for example, Zwikker and
Kosten [88], Beranek [6,8], and Bies [ll]) requires that an empirical
parameter called the structure factor be determined. The definition of
the structure factor depends on the author. The most common definition
of the structure factor is that it 1s a correction for the tortuosity
the sound wave encounters as it travels in the material [6,8,11,88].
Another definition of the structure factor is that it is a correction

for the effective acoustic air density caused by motion of the frame



[11,88]. Although the theories discussed in this section can be tied,
in special cases, to the theory used in the present study, the structure
factor is not used here.

Zwikker and Kosten'[883 have presented the most comprehensive
study of the acoustics of porous materials. They used Rayleigh's basic
theory [67] as a starting place and introduced the structure factor
and frame motion. In turn, their theory has become the starting point
for the rest of the theories discussed in this sub-section.

Beranek [8] started with the equations that Zwikker and Kosten
[88] derived in their analysis. Except for the structure factor,
Beranek's analysis reduces to the rigid material model described in the
next sub-section. Beranek measured the propagation parameters and im-
pedance and, through his analysis, presented results illustrating the
volume coefficient of elasticity of air in the porous material (heat
transfer effects) and the effects of having the sample vibrate in its
holder. A theoretical analysis of heat transfer effects is discussed
in Appendix A of this study. Beranek's measured data show a much smaller
transition region between the two heat transfer states than was deter-
mined here or by others [11,34,88]. In determining the sample vibra-
tioné in its holder, Beranek addressed a problem important to avoid in
the experiments. If the sample holder holds the sample too tightly, or
too loosely, the sample will tend to resonate at low frequencies and
cause the experimental results to be erroneous relative to results de-
termined from properly held materials. The resonance problem was con-
sidered in the present study and the experimental results indicate that

the problem was avoided. Beranek also discussed coupling of acoustic

8



and solid waves, but concluded that, at higher frequencies, the ma-

terial becomes decoupled from the acoustic waves.

Delany and Bazley [25] carried out an extensive empirical study

of the acoustical properties of fibrous porous materials. They norma-
lized their data to the dimensional parameter f/o,* where f is the
frequency in Hertz and ¢ is the flow resistivity in MKS Rayls/meter.

The empirical relations they determined are useful over the specified
range of 0.01<f/0<1.0. The relations are used to calculate the attenua-
tion, phase speed, and impedance. Although not directly applicable to
the present study, the equations are useful in checking measurements
made at low intensities.

Bies [11] reviewed some of the above theories. He also dis-
cussed measurement of flow resistance and porosity. Bies gave an ap-
proximate relation for the structure factor. The discussion was not
limited to fibrous materials. .He presented data on cloths, fibrous
materials, and fiberboard materials.

Most of the above theories account for fiber motion (other
than sample resonance). Lambert's [49] analysis of Zwikker and Kosten's
theory [88] indicates that above 130 Hz the air and frame of Kev1a£® 29
aramid (du Pont de Nemours Company) are "decoupled".+ Because f > 100 Hz

in the present study, we are not concerned with frame motion. Support

* ,

All the symbols are listed together at the beginning of this disserta-
tion.
+Kevlar®29 is a plastic fibrous material that is used extensively in the

present study.



for Lambert's conclusion is given in Chapter IV. Lambert also deter-
mined that the decoupling frequency for Scottfoam (Scott Paper Company)
was at 85 Hz. Scottfoam is a fully reticulated,* expanded polyurethane
foam and is similar to the Scottfelt (Scott Paper Company) used in the
present study. Although Lambert used the material density P = 600 kg/m3
when, in actuality, the density of Scottfoam is P= 1153+32 kg/m3 [89],
the error leads to an error of only 4 Hz in the decoupling frequency.
We conclude from Lambert's analysis that the rigid frame model is appro-
priate for use in this study.

3. Rigid Frame Model

In this section the low-intensity theory that is used as a

basis and reference for the analysis in Chapter II is presented. This

theory is based on the assumptions that (1) the dc flow resistivity can
be used directly in the momentum equation and (2) the material structure
is rigid. The first to use these assumptions were Kihl and Meyer [45].
By using the flow resistivity o, their paper (1932) represents a simpli-
fication of Rayleigh's more complicated treatment. Other authors [23,
30,32,33,68] have used or rediscovered Kihl and Meyer's approach as a
starting place and expanded on it.

Kihl and Meyer used equations equivalent to the linearized
continuity equation

Gp + ._O_J_)(— = 0 3 (1—1)

*
In the process of making a foamed plastic, thin plastic membrances form
between the air cells of the foamed plastic. In a fully reticulated

foam the membranes have all been removed.

10



the linearized momentum equation

E)_B.Ii!_g-.*.p +O—u=0 ’ (1—2)
P x TP

and the equation of state P=c2p to solve for the impedance, attenuation,
and phase speed, where u is the acoustic particle velocity in the x di-
rection, p is the acoustic pressure, 6p is the acoustic density, o is
the ambient density, c is the sound speed, P is the porosity, x is the
distance, t is the time, and the comma denotes differentiation of the
dependent variables with respect to x or t (the independent variables).
In their theoretical analysis Kuhl and Meyer assumed the compressibility
of air in a porous material to be variable. They assumed the adia-
batic sound speed co=/;§;75;; where Y=CP/Cv is the ratio of specific
heats. They reasoned that the compressibility, and thus the density, of
the air could be determined by experiment. In their calculations they
used the standard compressibility of air poci. In Appendix A we assume
a constant density Py We show that, because of heat transfer effects,
the speed of sound is a function of both porosity and frequency. Be-
cause the relation derived in Appendix A is frequency dependent, we use
the isothermal sound speed bo= /5375;.

The above equations may also be combined to obtain a wave

equation [23]

u tt agu t
u - —— + —2 = O . (1_3)
s XX b2 2
(o) Opo
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The use of P as a divisor of u depends upon whether the reference u is
in the material or in the open air (no material). Here, as P decreases
the particle velocity in the material increases. The importance of
using u/P as the effective particle velocity is discussed in Chapter II.
Note that although Eq. I-3 seems to be independent of P, the flow re-
sistivity o 1s actually a function of P.

To solve Eq. I-3, one can assume that a time harmonic wave

=e3(wt—Tx)

where FQB—ja, w=2nf, and j=v-1, propagates in a porous material. The

wave encounters the attenuation

2
-1 fl+ (L) (I-4)
wp
and the wave number
. (I-5)
The phase speed cPH=w/B is
V2 b
. (I-6)

AT

Plots of attenuation and of phase speed versus frequency for several

commonly found resistivity values are shown in Figs. I-1 and I-2,
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respectively. Both the attenuation and phase speed can change dramati-
cally over a relatively small frequency range. These changes are im-
portant in the propagation of intense sound in porous materials. In
porous materials intense sounds do not behave in the same manner as in
open air, which has a low, uniformly varying attenuation (awwz) and only
minor (usually negligible) dispersion,

Kthl and Meyer showed that the specific acoustic impedance in-
ternal to an essentially semi-infinite (aL>>1, where L 1s the sample

length) porous material is

W = wR + JwI (I-7)

where the resistive part is

w pobo / ) 2
= 22 1 1+ -

and the reactive part is

b
o

2
o Jo1 +1+(-Z) . I-9
L T / +V/ +(“’°o) (1-9)

W = -

We see that Eqs. I-4 and I-5 are of equivalent forms to Eqs. I-9 and
1-8, respectively. We conclude that, for the small signal case,
measuring the impedance when al>>1 is equivalent to measuring a and 8.
This comparison proves to be a good check on both the theory and data.
The real and imaginary parts of the impedance are plotted

versus frequency for three flow resistivities in Fig. I-3.
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The general propagation parameter T and impedance W equations

are related to each other by [49,88]

W) = (WR4-ij) coth(a + jB)L . (1I-10)

Fquation I-10 is for finite length (aL< 1) materials mounted on a hard
surface. Equation I-10 1s appropriate for most low-intensity impedance
measurements and is used in the analysis presented in Chapter IV.

When a sound wave traveling in air encounters a porous material
some of the energy of the incident wave is reflected from the material
surface and some is transmitted into the material. The impedance dif-
ference between the air CION and the material W(L) causes the separation
of the incident wave into two parts. The ratio of the transmitted (ab-

sorbed) energy to the incident energy is the absorption coefficient.

(oS ]

(U(L)—poc0
a =1

n W) +poc0 (I-11)

As the transmitted wave travels in the material it is attenuated (Eq. I-
4) by the action of viscous effects. In the present study the term ab-
sorption is used to describe a reflection/transmission process, whereas,
the term attenuation is used to describe the decay of a traveling sound
wave. Absorption coefficients (al>>1) are plotted versus frequency for
three flow resistivities in Fig. I-4.
In Figs. I-1 through I-4 we find that the value of the flow

resistivity affects the acoustical properties of porous materials. Thus,

the importance of determining flow resistivity cannot be overstated. The
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flow resistivity o depends on the material structure. Flow resistivity
may be determined either through acoustical testing or through dc
(steady state) flow resistance testing. Both methods are used in the
present study. At this time, there are no theoretical relations that
can be used to predict o. Several empirical relations [24,33,34,60,78]
have been formulated to predict the flow resistivity of fibrous materials.
Only two relations [33,34] will be discussed in the present study.

By using hydrodynamic analysis, Hersh and Walker [35] deter-
mined a relation between viscosity, porosity, fiber diameter d, and flow

resistivity inside a fibrous porous material with flow perpendicular to

St [“g\/mn—m ]
2

[ - ]3/2 ’ (I-12)
d'g

the fibers,

4(1-P)

where g is an empirical constant. Equation I-12 is used in Chapter IV
to calculate the dc flow resistivity for unmeasured values of o.
Hersh and Walker determined g=0.059 for batted Kevlar 29. They com-
pared data and theory at low frequencies.
For their data-theory comparisons Hersh and Walker derived a
tt

low frequency approximation to Eq. I-3 by ignoring the u term. For
2

a sinusoidal wave they found that the attenuation o and wave number B

a=B= w
Vv 2bp

(o]

were equal to

Q

(I-13)

a N
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For porosities in the range of 0.9<P<0.97, the low frequency approxi-
mation is valid for f<2 kHz. TFor a full frequency range prediction the
constant g must be redefined.

Hersh and Walker [33] showed that o is related to d, u, and P

by

o = 5 h(P) , (I-14)
d

where h(P) is a structurally dependent function of P. For their specific
case the relationship is given by Eq. I-12. 1In dimensionless quantities
Eq. I-l41is

g, = —EL 5 h(P) = h(P)/Re , (1-15)

wd
Py

where Re is an acoustic Reynolds number [5,33]. The value of the acous-
tic Reynolds number is important in our analysis. When Re>>1 the acous-
tic boundary layer is small relative to the fiber size, viscous effects
are unimportant, and Eq. I-12 is not valid. When Re<<l the boundary
layer is large, viscous effects are important, and Eq. I-12 is valid.
For the materials and frequency range used in the present study,
10-33Re523. Most of the experiments were done such that Re<l,

Flow resistance data for many different porous materials have
been presented in several studies. Nichols [60] dealt solely with the
linear flow resistance of fibrous porous materials. He also determined
an empirical relation for fibrous materials. Brown and Bolt [19] pre-
sented data on both linearly and nonlinearly behaving materials and were

the first to plot flow resistance data versus particle velocity on a log-

log plot. Plotting the data in this manner illustrates the relative

20



nonlinearity of the dc flow resistivity (see Chapter IV). Bies and
Hansen [12] present linear flow resistance data for many porous materials.

Only viscous effects are considered in the above theory. The
frequency dependent effects of heat transfer on the compressibility of
the gas in the porous material are ignored. Heat transfer effects
cause the compressibility of the air to be neither adiabatic nor iso-
thermal and, for comparison with data and for simplicity in the calcula-
tions, the limiting values of the adiabatic and isothermal sound speeds
are each used in the low-intensity sound calculations. In the high-
intensity sound calculations, because of increased heat conduction, only
the isothermal sound speed is used. The theory that has been summarized
up to this point will be used as a basis for comparison between the first
order theory developed in Chapter II and the small signal experiment re-
sults presented in Chapter IV,

In 1980 Hersh and Walker [33] extended their 1979 theory [34]
to include heat transfer effects. They used results of experiments on
dc flow through fiber bundles to determine relations to fit equations
for heat transfer and viscosity effects. They obtained a one-dimensional
wave equation that combines both heat transfer and viscosity effects.
There are three empirical constants to fit to the data; one constant
deals with heat transfer and two constants deal with viscosity. The
values of the viscosity constants depend on whether the sound travels
perpendicularly or axially with respect to the fiber orientation. The

wave equation is
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where K is a heat transfer parameter and ¢, is a viscous drag parameter;

H
both parameters are functions of the porosity, fiber size, and their

respective fitted constants. The viscous drag parameter presented by

Hersh and Walker [34] is

4u(1-P
oy = - _“_(?__). (VoD + Dp], (1-17)
where
. 3
D = 16/1-F [1 + 14.75(1-P)7] , (I-18a)
b= 3.0600-P 40+ 2700-P0°T (1-18b)
P

where Vn and Vp are the empirical constants and the subscripts denote
flow parallel (p) to the fibers and flow normal (n) to the fibers. Hersh
and Walker fit Eq. I-18a to dc flow resistance data taken on many dif-
ferent materials by Davies [24]. Davies found very little scatter of
measured data from his own theoretical predictions. Hersh and Walker

fit Eq. I-18b to dc flow resistance data taken on a variety of compact
bundles of parallel fibers by Sullivan [78]. Sullivan also found little
deviation of measured data from his own theoretical predictions. Even
though Daviés and Sullivan found little scattering in their data, the
data fitting constants Vn and VP in Eq. I-17 should be determined for

each material to be used. 1t appears that, since there are two constants,
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the equation may be used for a material made of randomly oriented fibers
[34]. As shown by Hersh and Walker and in Chapter IV, the definition of

oy can be used to define the flow resistivity without including heat

transfer effects.

The heat transfer parameter presented by Hersh and Walker is
21.6vu(1-P) >/ ?[1+3.9401-P)]

K = 5
Prd PTn

’ (I-19)

where Pr=uCp/K is the Prandtl number, ¥ is the thermal conductivity of
the medium, and Tn is an empirical constant. The basis for this
equation was taken from work donme by Masliyah [55] on dc energy and
momentum transfer from cylinders oriented normally to the fluid flow.
The heat transfer effects on the sound speed in Eq. I-19 are similar to
those determined in Appendix A.

The material Hersh and Walker used in their tests is Kevlar 29.
As noted earlier, this material is used in many of the experiments in
the present study. In addition, other materials are used in the present
study and the test results are discussed in Chapter IV.

4, Lumped Element Model

The last linear theory to be considered here was published by
Zarek in 1978 [82]. He considered sound absorption by flexible poly-
urethane foams. He considered materials with and without an impermeable
membrane facing. He approached the theory from a lumped parameter model
for the gas and material and used the results to determine a Lagrangian

that includes Rayleigh dissipation. He then applied Hamilton's

23



principle and determined equations of motion for the coupled

air-material system. He stated that the parameters only include the

small scale effects of the porous medium; all nonlinearities of the air

and material are ignored. His theoretical predictions agree well with

his experimental results. Zarek also compared his theoretical pre-
dictions to some of Beranek's [7] data and found fairly good agreement
between the two. Zarek's theory is not useful in the present study because
he considered material motion and he ignored all nonlinearities.

The theories discussed in this section all pertain to the
acoustical properties of the porous materials at low intensities. Many
of the theories include frame motion of the material, but Lambert's
analysis shows that, for the present study, the frame motion is negli-
gible. Neglecting the frame motion greatly simplifies the analysis.

In Chapter I1 we use the conservation equations and show which assump-

tions lead to the rigid frame theory.

24



C. Nonlinear Theory

This section contains a presentation of two topics. The first
topic is a brief review of how an intense sound propagates in a fluid
and how absorption and dispersion affect shock formation and attenuation,
The second topic is a brief presentation of the theoretical and experi-
mental studies of intense sound reflected from thin porous sheets.

1. 1Intense Sound in a Fluid

The propagation of an intense sound in a fluid is fairly well
understood. The brief theoretical treatment presented here is based on
extensive work by others and is presented as background to the nonlinear
theory used in Chapter II.

For any point on the waveform the propagation speed will vary
as [10]

dx

dt

fl
[¢]
+

u . (I-20)
u=const

Equation I-20 adds the effect of convection u to the sound speed

=+ /92
c b

where P is the total pressure, s is the entropy, and p is the total

’ (I-21)
S

density. The pressure-density relation is nonlinear, ¢ depends on tem-

perature, and for a simple wave

-1
c=c_ + Y—Z—u . (1-22)
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The propagation speed becomes

dx = c_+8'u , (1-23)

u=const
where B8'=(y+1)/2 is the nonlinearity parameter of air. In the small

signal case, where u<x o

In an isothermal situation, such as in a porous material, y=1 and B'=l
and the nonlinearity of the air is reduced. 1In a porous material the
nonlinear effects are more complicated than suggested here.

Since the propagation speed varies with location on the wave-
form the wave peaks will travel the fastest and the wave troughs the
slowest. The thermal and convective effects are cumulative, the wave-
form distorts as it travels, and, when u is large enough, the compres-
sional phases steepen and form shocks. Distortionof the wave is accom-
plished by the generation of higher frequency harmonic components. All
fluids dissipate energy, the high frequency components are attenuated at
a faster rate than the fundamental component, and, thus, dissipation
limits the distortion of the waveform. By shifting energy to the higher
harmonic components, the fundamental loses energy more rapidly than at
low intensities. The increased loss is called excess attenuation and we
find that the excess attenuation increases with source intensity. Above

a certain source level we find that, no matter how much we increase the
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energy input, the excess attenuation limits the measured level to a
constant. Wecall this constant level the saturationlevel[A,S7,76,81].
The farther a measurement point is from the source the lower the satura-
tion level is at that location. Before the dissipative effects are dis-
cussed, the progressive distortion of the wave is discussed.

In studying shock formation and dissipation in a lossless

fluid, the Fubini solution [16]

*
iL =:£:_Z; Jn(nc )sin n(wt-kx) (1-24)
o no

applies to the region before shocks are formed (o*<l) when the boundary
condition at x=0 is
u(0,t) = uosinwt s (I-25)

where u is the initial particle velocity amplitude, Jn(-) is the nth

order Bessel function, o*=x/x, x=1/B'ek is the shock formation distance,
e=u0/co, k=w/co, and n denotes the nth harmonic.
In the region (0#%*>3) where shocks are well formed and have be-

gun to decay, the Fay solution [16]

2 = 2/6 sin n{(wt-kx) (I-26)

o sinh[n(l+c*)/G]

is applicable, where G=R'ek/a, which is sometimes called the Gol'dberg
number [10]. In the limit, as G»w, Eq. I-26 represents a sawtooth wave.
In this limit the ordinary dissipation 1s small relative to the rate at
which energy is pumped into the higher harmonic components and dissi-

pated in the shocks. Blackstock [16] devised a scheme to combine the two
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solutions, Eqs. I-21 and 1I-23 (G=«), into a third solution such that
the whole region from the boundary to infinity may be explored.

Since G#&e, a perfect sawtooth wave never forms. The Gol'dberg
number indicates the relative importance between distortion and ordinary
dissipation. For a very strong wave, such that B'ek>>a, the shock forms
quickly, approximating a sawtooth, and takes some distance to dissipate.
For weak waves or large viscous dissipation, such that B'ek<<a, a shock

wave will not form.

In 1977 Bj¢rng [14] compared dissipation effects to nonlinear-
ity effects by using both the Gol'dberg number and the Keck and Beyer
[40] perturbation solution of a nonlinear wave equation to study in-
tense sound propagation in a viscous fluid saturated, rigid sediment.
Bjdrng experimentally determined the parameter of acoustic nonlinearity
in fluid-saturated sediments by using Beyer's analysis [9]. Bjdrné
showed in his analysis that the amplitude of the second harmonic com-
ponent could not exceed 1.37%7 of the fundamental components because the
attenuation effects are much larger than the nonlinearity effects.
Bjérnd indicated that, for most high-amplitude sounds, the sound goes
directly from finite-amplitude distortion into the "old age" (the wave-
form is nearly sinusoidal) propagation region. He noted that a shock
wave propagating in a sediment decays rapidly and he concluded that the
nonlinear effects are negligible in viscous fluid saturated sediments.

Determining the nonlinear behavior of a material is important.
If the material behaves very nonlinearly, relative to attenuation, then

harmonics are generated very rapidly. In the present study the dc flow
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resistivity characteristics are used to define both the viscous dissi-
pation and nonlinear properties of the material. Carman [21] stated
that for dc gas flow through porous materials the transition to non-
linear behavior is related to the onset of turbulence and the modified
Reynolds number

=9
Rm TS ’

(1-27)
where v is the kinematic viscosity and S=4(1-P)/d is the surface area/
unit volume. Carman stated that when Rmz 1 the flow resistivity behaves
nonlinearly, i.e., the flow resistivity depends on the particle velocity.
Later in this study we find that the manner in which the nonlinearity is
caused, i.e., turbulence, may be important to how an intense sinusoid
loses energy. We find that the complexities of excess attenuation of a
sinusoid are not as easily defined in a porous material as in an open
fluid. In addition, how the nonlinearity is defined and used becomes
extremely important to how well the effects of nonlinearity are pre-
dicted.

Blackstock [17} presented a perturbation solution for a
Burgers equation governing the propagation of sound in an absorbing,
dispersive fluid. He showed that the dispersive characteristic affects
the level of the generated second harmonic component. This effect has
importance in a porous material. Equation I-7 shows that porous ma-
terials are very dispersive. The harmonic components of intense sounds
generated in a porous material may be greatly affected by the dispersion
because energy added to the components will be added out of phase with

the energy already present,
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Zorumski [84] presented conservation equations for thin sheets
of porous materials with nonlinear dc flow resistance. He used these
equations to determine the scattering of sound from porous elliptic
cylinders. He did not attempt to solve the conservation equations for
the propagation of intense sound in a bulk porous material. His re-
sults are described in the next section,

In this section a very brief review on intense sound prop-
agation through lossless and dissipative fluids has been presented.

These ideas are useful in the analysis and comparisons made in Chapter IV,
2, Reflection of Intense Sound

For all practical purposes, a sound propagating in a porous
material must first enter the material from an adjacent medium. A wave
incident on the surface of a bulk material is reflected from as well as
transmitted into the material. 1In order for us to understand the losses
associated with the transition from one medium to another, we must deter-
mine the impedance of the material. Most materials are acoustically
finite (aL<l) and, as shown in Eq. I-10, the impedance, the propagation
parameters, and the material termination impedance (at x=L) all influence
the measured impedance. At high intensities the analysis becomes dif-
ficult because both the impedance and propagation parameters depend on
intensity. We have just seen that as an intense wave propagates, energy
is transferred to the higher harmonic components. The harmonic components
interact with each other and superposition is no longer valid. When
an intense wave is used to measure reflection (or absorption) properties

of a porous material, the sound level, instead of just frequency, must
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also be specified. Since superposition is not valid, the incident and
reflected waves may influence each other. For short interaction regions
this influence may be small. For large interaction regions, such as in
long pulse trains or standing waves, the mutual influence must be ac-
counted for.

This section contains a review of past studies of the reflec-
tion of intense sound from different surfaces and the determination of
the impedance of sheets of porous materials., Both theoretical and ex-
perimental studies are examined.

In 1960 Blackstock [15] showed that intense sounds reflected
from surfaces do not always follow the commonly used small signal laws.
Blackstock considered a pressure release surface, an infinite impedance
surface (a hard wall), and a thin resistive sheet. Regardless of in-
tensity, reflections from a pressure release surface are accompanied by
a doubling of the particle velocity at the interface. In addition,
Blackstock found that at a hard wall the variational sound speed c is
the variable that doubles throughout the intensity range. The pressure
doubling law for reflection from a hard wall is only an approximation.
However, at a sound pressure level of 174 dB re/20 yPa the deviation
from pressure doubling is only 6%. Above 174 dB pressure amplification
at the wall increases and a more exact relation must be used.

In the case that most interests us here, the thin resistive
sheet, Blackstock found a relation for the pressure reflection coeffi~

cient
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where Pr 1s the reflected pressure, Pi is the incident pressure,
&(z)=Re(z)—poco, z is the specific normal acoustic impedance, Im(z)=0,
e=uo/c0 is the acoustic Mach number of the initial wave, and ¢ is a
specific location on the wave that is followed through the course of
travel of the wave.

Unfortunately, porous materials do not meet the condition that
Im(z)=0. However, the case of purely resistive porous materials is in-
structive. From the analysis results the acoustical characteristics of
the real material may be inferred. Equation I-28 may be used to follow
only one point on the waveform at a time. If the first peak of the sine
wave (compression) is followed as it leaves the piston, sinw$=1.0. In

terms of the real part of the acoustic impedance, the absorption coeffi-

clent is
2 2
2Re(z) | y+l Re(z)
_— + 1—y €
2 Ooco 2y poco
an-1-|R] =1-|1- 5 (1-29)
1+ Re(z) 4 y+1 1-y (Re(z)) .
pc by pC
00 o0

Equation I-29 can be used to calculate the absorption coefficient that

the peak of an initially sinusoidal wave encounters.
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If the minimum of the sine wave (rarefaction) is followed as
it leaves the piston, sinw$¢=-1.0 and the signs of the two £ terms in
Eq. I-29 become negative. This change of sign indicates that the phase
of the wave is important to reflection from purely resistive porous
materials. This statement of phase dependence should hold for any
porous material. For example, when Re(z)/poco=3.0 and €=0.02 (160 dB
re/20 uPa) an=0.763 for sing=1.0 and an=0.738 for siné=-1,0. The dif-
ference increases with increases in Re(z) and ¢.

In the above analysis Re(z) is arbitrary and may be a function
of the particle velocity. If the impedance is a function of the particle
velocity and Im(z)#0, then a_ changes more dramatically than indicated
by Eq. I-29, because both Re(z) and Im(z) affect the value of a .

Zorumski and Parrot [83,86] and Zorumski [84,85] are the only
researchers to present a combined theoretical-experimental analysis of
thin nonlinearly behaving porous materials. The most general presenta-
tion is in Ref. 86. The mathematical and computational details are in
Refs. 84 and 85, respectively. We summarize their general theory, ex-
periments, and results below.

In this theory Zorumski and Parrot present generalized, func-
tional relations for the conservation of mass and momentum. They assume
the material is thin enough that XA >> L, where X\ is the wavelength, and
that the velocity differential across the sample is negligible. They
also assume negligible compressibility in the material. Thus, the con-
servation of mass equation does not enter into their analysis. Their

analysis is based on use of the momentum equation. They assume that the
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particle velocity dependent dc flow resistance can be used to describe
the acoustic flow resistivity R[V(t)], where V(t) is the acoustic
particle velocity. In addition, they assume the acoustic reactance
X[v(t)] is a function of particle velocity. TFrom their version of the

momentum equation they obtain a temporal impedance operator Zt such that

z V(t) = {R[V(t)] + x[v(t)] :—t} V(t) . (1-30)

The temporal impedance operator is evaluated from their experimental
data. They claim the theory can be used to evaluate the impedance en-
countered by any distorted waveform. Their analysis is done for dis-
torted sinusoids. As discussed below, if there is no nonlinear inter-
action between the harmonic components nor between the incident and re-
flected waves, then their claim appears to be valid.

We now discuss Zorumski and Parrot's [83,86] experimental in-
vestigation. They used a standing wave tube with a microphone flush
mounted with the surface of the rigid termination of the tube. They
placed the material at one-fourth wavelength from the rigid termination.
second microphone was placed outside the material surface that was away
from the termination. Tests were done at 0.5, 1.0, 1.25, 2.0, and
4.0 kHz and at sound levels from 120 to 160 dB. They noted, that, be-
cause of the material and second microphone placement, all even harmonic
components of the fundamental were ignored in the experiment and, thus,
in the theory. Ignoring the even hammonic components might lead to

problems because the components may interact with the waves everywhere
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except for in the material. As seen in Eq. I-24 harmonic component gen-
eration from a sinusoid starts by generating all harmonics, and, mainly,
the second harmonic. If all the even harmonics are ignored, then much
of the energy lost by the fundamental is being ignored and measurement
error is being introduced.

Zorumski and Parrot presented several interesting results.
First, they showed that the acoustic flow resistivity is independent of
frequency and closely approximates the dc flow resistance at all par-
ticle velocities. Second, they showed the acoustic reactance to be a
function of both frequency and particle velocity. The theoretical-
experimental results are found to be consistent and in fairly good
agreement over large frequency and sound level ranges,

The above analyses presented by Blackstock and Zorumski and
Parrot show that the analytical and experimental determination of non-
linear porous material impedance is extremely complex. This complexity
has led many researchers to experimentally determine the impedance and
absorption of various materials. Shock tube experiment results [27,35,
79] will not be discussed.

In 1970 Powell and Van Houten [64] used band-limited tone
bursts at frequencies between 500 Hz and 10 kHz to study the absorption
properties of porous material covered resonators. They measured the in-
cident and reflected peak pressures at a single microphone position and
discussed design considerations for the test procedures. The evaluation
of their results is difficult because the exact length and diameter of

their wave tube, or tubes, was not specified. It appears that the tube
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length could have been greater than the shock formation distance at
high frequencies and sound levels. They discuss design criteria for
the optimum tube lengths and diameters, but do not state how, or if, the
criteria were implemented. They analyze the waveform and spectral con-
tent of what appears to be their input waveform to the acoustic driver.
They never indicate what the incident and reflected acoustic waveforms
look like. They did not indicate whether they saw shock formation or if
the acoustic waveform was distorted by the reflecting surface. The tube
length is important because at high intensity, if the tube length is too
long, then the measured absorption coefficient would be incorrect.
Measurement of the absorption coefficient depends on the attenuation of
the traveling wave being constant with sound level change. A wave
traveling in a tube longer than the shock formation distance % ex-
periences different attenuations. The attenuation depends on where the
wave is with respect to X, Before the wave reaches X, the shock is
forming and the attenuation of the fundamental component 1s greater than
tube wall attenuation. After X, the attenuation increases and then,
when x>4X, asymptotically approaches tube wall attenuation [16]. Some
nonlinear attenuation effects can be accounted for in the calibration
measurements, but, as indicated above, the error can grow rapidly and
a short tube is necessary.

In 1973 Melling [55] experimentally and theoretically deter-
mined the impedance of perforated plates and perforated plate resonators
at low and high intensities. He showed how both the real and imaginary

parts of the impedance change with the intensity. He designed a high
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intensity standing wave impedance tube which has a frequency range of
300 to 3250 Hz and upper sound pressure limits of 144 to 159 dB [56].
The system is large and also requires large transducers to generate the
required steady state sound levels. Melling's program is well thought
out and could be useful for evaluating bulk porous absorber character-
istics. Unfortunately, the cost of building a system of this type is
large and this type system was not used in the present study.

In 1980 Nakamura et al. [58] described the absorption of a
small-signal, plane N wave by finite length porous materials. They
showed that the individual Fourier components of the N wave interact
individually with the porous material. If the material is long enough,
one can determine wR and WI and, if it is short enough (al<l), one can
determine o and 8.

In a later paper Nakamura et al. [59] described the reflec-
tion of a plane N wave fromthe end of an open pipe. They showed, as in
their earlier paper, that the low level impedance is predicted by low
level N wave tests, but the high intensity N wave reflections are
drastically modified as the amplitude increases. They stated that their
results show the total reflected energy between zero and 10 kHz to be
approximately invariant with respect to the N wave amplitude. In this
latter paper, they used a much different system in the measurement of
impedance. The large amplitude N wave does not propagate in a linear
fashion and the frequency components interact. They used an algorithm
similar to the algorithm developed by Pestorius [62] to mathematically

propagate the measured incident wave to the pipe termination. They
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modified Pestorius' algorithm to mathematically propagate the measured
reflected wave backward from the microphone to the pipe termination.
After they mathematically propagated both waves to the end of the pipe,
they subtracted the Fourier transform of the reflected waveform from
the Fourier transform of the incident waveform. They used the results
of this subtraction to calculate the pressure reflection coefficient and
the energy reflection coefficient of the open pipe. This method works
because the reflected wave is inverted with respect to the incident
wave and much of the high frequency energy of the incident wave is lost
out the end of the pipe so that no shock exists in the reflected wave,
In fact, by the time the reflected wave reaches the microphone, the wave
does not develop a shock.

If a porous material was placed in the system of Nakamura
et al. [59], the reflected wave would (usually) not invert. A shock
could reform in the reflected wave and the above method could not be
used. Once a shock has formed in a wave the process cannot be mathe-
matically reversed to obtain the original waveform because information
has been irretrievably lost in the shock formation process. The method
devised by Nakamura et al. is limited because it may not be useful
above certain sound levels and requires a computer for the calculations.
For these reasons a more useful method was sought.

In 1981 Kuntz et al. [47] described a simple impedance
measurement method. This method is described in detail in Chapter III

of this study and experimental data is presented in Chapter IV.
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In this section several test methods and theoretical descrip-
tions that show the change of impedance with intensity have been dis-
cussed. The advantages and disadvantages of the different methods have

been discussed and serve as background information for the measurement

methods described in Chapter III.
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D. Summary

Several diverse topics have been considered in this chapter.
In spite of their diversity, the topics are the basis for understanding
the theory and results that follow in the remainder of this study.

Many theories have been developed to explain low-intensity sound prop-
agation in porous materials. In this study, because of the complexity
of the nonlinear acoustics analysis, only the simplest approach is used,
that of using the dc flow resistivity to define the viscous effects in
a rigid porous material [30,32,33,45,68]. The more complicated ap-
proaches that include heat transfer and material motion [8,11,34,49,67,
88] could, conceivably, be used, but the mathematical complications are
prohibitive. 1In most cases, the simple approach is seen to result in
adequate prediction of the acoustical properties.

From the nonlinear acoustic theory for fluids we have shown
that, because of the high dissipation in a porous material, shock waves
will probably not be formed in an intense sound wave. Perturbation of
the éonservation equations is used in Chapter II to describe the prop-
agation of intense waves in bulk porous materials.

Propagation of a wave in the material is not the only aspect of
sound interaction to be considered. The wave must enter the material
and, consequently, a wave incident on the surface of a bulk porous ma-
terial is reflected from as well as transmitted into the material. The
mathematical predictionof the impedance that an incident, high-intensity
sound wave encounters at the surface of a bulk porous material is not a

trivial task. In fact, the task has never been accomplished. 1In this
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study only a simple mathematical approximation to the impedance will be
made.

Because superposition is invalid for intense sound, the
measurement of the impedance of a bulk porous material exposed to an in-
tense sound is also not trivial. Many measurement methods have been
developed to measure the impedance of both bulk and sheet materials.
These methods all show that the acoustic impedance and absorption co-
efficient of a porous material depend on the amplitude and frequency
content of the incident sound wave. Another measurement method is pre-
sented and used here because it appears to circumvent some of the pro-

lems that the other methods do not address.
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IT. THEORY AND MODELING

In Chapter I various theories for sound propagation in
acoustic materials were described. The rationale for modeling porous
materials as rigid materials was presented as a reasonable assumption.

In Sections A through C of this chapter the mass, momentum,
and energy conservation equations are derived for porous materials. The
model is limited to rigid, isotropic, nonlinear, air saturated, bulk
porous materials.

In Section D perturbation is used to determine approximate
solutions to the conservation equations. These solutions are used in an
attempt to predict the manner in which intense sound propagates through
a porous material. Because the measured boundary conditions are not
ideal, an approximate boundary condition is considered. The boundary
radiates both the first and second harmonic components into the
material. The two components can be set to arbitrary amplitudes and
relative phase. A second-order approximation is determined. 1In
Chapter IV the solution is compared to the data.

In addition to sound propagation in the porous material, the
characteristic impedance of the material is important. In Chapter I we
found this problem to be extremely complicated at high intensities.

In Section E an approximation to the impedance relations is made to
determine a useful intensity dependent impedance relation. The results
only apply to sinusoidal waves normally incident on the surface of a

semi-infinite porous material.
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In Section F the approximation of Section E is extended to
illustrate nonlinear propagation of the fundamental component. In
addition, another model is proposed to illustrate the effects of
saturation and excess attenuation on the fundamental component.

In Section G a short summary of the chapter is presented.

In Chapter IV the various models are compared to the data.

43



A. Continuity Equation Derivation

The physical concept of how a fluid flows through a porous
material is necessary for us to understand how the flow is distorted
and impeded by the material. The continuity equation derivation is
presented in simple physical arguments so that we may take certain
assumptions for granted in future derivations.

A simplified cross section drawing of a bulk porous material
control volume is shown in Fig. II-1. The structure is made of many
parallel fibers. The control volume is fixed to the rigid structure.
If no structure is present, the particle velocity is represented by u.
When the fluid enters the porous material the velocity is increased by
a factor of the porosity P. The porosity is the volume of the air in
the control volume relative to the total volume (including fibers) of
the control volume. We assume the material to be homogeneous and the
porosity constant in each derivation.

For the derivations we need to know the relation between po-
rosity and the cross sectional area a fluid encounters in a material.
In Fig. II-1 a single "cell" has been drawn such that the four sides
each bisect two fibers. Thus, a quarter of each fiber is enclosed by
the cell. Assume each cell to be of length L along the fibers. The

porosity of the cell is

ﬂdz

- II-1
4DHL ’ ( )

=1

where D and H are defined in Fig. II-1.
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A gas flowing through the material will not have a constant
speed. Thus, the average open area encountered by the gas flow may not
be evaluated at any point in the medium. The open area, as a function
of x, is integrated along the length D of the cell. In doing the in-
tegration we find the same relation for the area as for the porosity,

Eq. ITI-1. We define the average open area to be

= PA -2
Ap P , (II-2)

where A is the cross sectional area of the control volume.

A physical statement of the continuity equation is that

the mass flux across the = the time rate of change of
control volume surface mass in the control volume.

For the one-dimensional system shown in Fig. II-1, the continuity
equation is

u u
o5 Pal_ - o = PAl

- 9P _
P B = = PAaAx , (II-3)

x+Ax

where p is the total density, x is the position, Ax is the control
volume length, and t is the time. A differential form of Eq. II-3 is
found by dividing Eq. II-3 by PAAx and taking the limit as AX goes to

zero. Since both A and P are constant, the continuity equation becomes

8pu) , % _ g (11-4)
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Equation II-4 is used to describe one-dimensional mass flow in a porous
material and is one of the three conservation equations used in

Section D. Except for the porosity term P, Eq. II-4 is the usual con-
tinuity equation for fluids. 1In all future derivations u and P are
combined as u/P because a change in porosity only modifies the particle

velocity in Eq. II-4.
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B. Momentum Equation Derivation

In the following momentum equation derivation a one-
dimensional model is assumed. As discussed in Section II-A, the po-
rosity is included with the particle velocity.

The forces on the control volume fluid are illustrated in

Fig. 1I-2. The conservation of momentum states that

the time rate of change the sum of external X-momentum
of momentum inside the = forces in the x- + inflow
control volume direction (pressure through the
and drag) two end sur-
faces .

For the one-dimensional system shown in Fig. II-2, the momentum

equation is

2 2
Adpu . _ - - u_ u_ (I1I-5)
p at bx PA[X FA x+Ax FAMx + p P2 A[x TP P2 Alx+Ax ’

where P is the total pressure and F is the drag force/unit volume.

Dividing Eq. II-5 by AAx and taking the limit as Ax>0 yilelds

1 _ 1 2
P(pu)’t— P’X 52 (pu ),X F . (11-6)
Rewrite Eq. II-6 as
L u + pu = =P - L u2+ uu _ + puu - F (I11-7)
Pl ot PY ¢ % p2 P x PuY « ,X ’

where, from Eq. II-4, the underlined terms equal zero. The x-direction

momentum equation becomes
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pu ¢ puu X
2 5 = -— -
o+ -2 +P F . (11-8)

Except for the P and F terms, Eq. II-8 is the momentum equation for
inviscid flow in an open fluid.

The drag term F in Eq. II-8 must be evaluated. Fulks
et al. [29] give a derivation of their three-dimensional term which
is equivalent to F. A different approach is used here. By using the
following analysis F can be defined experimentally.

Both the drag and the dc flow resistivity are used to
define dissipation in a porous material. Whereas we have not defined F,
we can measure the flow resistivity and mathematically relate the two
variables. The dc flow resistivity in a porous material is determined
by first forcing a gas through the material at various, known particle
velocities. The pressure drop AP is measured at each particle velocity
u/P. Once these measurements are obtained the dc flow resistivity is

calculated by using [2]

PRac . Pap

1 oL , (1I1-9)

where L is the sample length. The dc flow resistance Rdc is a function

of particle velocity and is fit to the first order equation

[12,19,21,55,88]

—— =0o+n (II-10)
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where the coefficients o and n are fit to the dc flow resistivity data.
The drag term F is defined by noting that if the flow is
steady (dc), then the first and second terms of Eq. I1I-8 equal zero
[86]. The momentum equation becomes
P, = °F . (11-11)

Divide Eq. II-11 by the particle velocity inside the porous material

u/P to determine the dc flow resistivity inside the material

PR P
- _de_pox_ _PE (11-12)
L u u
and
= ulu . (11-13)
F=(o+n P)P

Both Hersh and Walker [33,34] and Zorumski and Parrott [86] have shown
the flow resistivity to be independent of the frequency. Thus, the

coefficients ¢ and n are independent of any time derivatives.
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C. Energy Equation Derivation

In this section the internal energy equation for the fluid in
the porous material is derived for use as the third conservation

equation in the perturbation analysis. As discussed in Section II-A,

the porosity is included with the particle velocity.

The energy transfer in the control volume fluid is illus-

trated in Fig. II-3. The conservation of energy states that

the time rate of net flux of

work/unit time heat
change of energy energy across done by sur- added
inside the con- = the control + face forces on + to the
trol volume volume sur- the fluid fluid.
faces

For the one-dimensional system shown in Fig. II-3 the energy

equation is

Abx 8p(e+u2/2P2) : p(e+u2/2P2)uA _ Q(E+U2/2P2)UA
9t P X P x+Ax
(I1I-14)
+ PgA _ PuA + qA - qA ,
X x+Ax X X+AX

where e is the internal energy/unit mass and q is the heat flux/unit

area. Dividing Eq. II-14 by AAx and taking the limit as Ax>0, yields

2,,52 (Pu)
(e+ul/2P?) - [p(e+up/2P ) ul —% - q (11-15)
,t ’

Equation II-15 is rewritten as

2 Pu
= De , ufp Du X ) :
(e+2P2) [p’t+ (OU).X]+Dt+P(P Dt+P,x) +—5= +aq =0 (II-16)

’
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where the total derivative is

9 u 9

= + =2 11-17
Dt 3t P 3x ( )
The terms in the square brackets of Eq. II-16 equal Eq. II-4, the
continuity equation. The terms in the curly brackets of Eq. II-16

equal-F in Eq. II-8, the momentum equation. The energy equation

becomes
p——De = - + 2 2}1 (I1-18)
Dt qx,x P P

The fluid in the porous material is assumed to be an ideal gas,

which has the properties

P =RpT (11-19)

and

de = CvdT (I1-20)

where R=(y—l)Cv, y=Cp/CV, T is the temperature, and Cp and C, are
the specific heats. By using Eqs. II-19 and II-20, Eq. II-18 is

rewritten as

(-qx x+F—;—> . (I1-21)

. (I1-22)

Dlp—l
RIs
+

}‘c
-
»
|
[e]
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Equation II-22 is used in Eq. II-21 to eliminate the density variable

such that
pp YPu u
—_ -2 = - - = -
e T TP (y-1)( qx,x+FP) . (I1-23)

This form of the energy equation is simplified by noting that the

heat flux 4. is negligible. There are three reasons for ignoring the
heat flux term 9, in Eq. II-23., First, in open air qx is usually ignored
between 20 Hz and 20 kHz, because the relatively long wavelengths and
short oscillation times are not conducive to heat transfer. Second, in
a porous material the wavelength is much longer than the fiber spacing
and the heat cannot flow along the direction of propagation without en-
countering many fibers in a wavelength. The analysis presented in
Appendix A shows that heat transfer effects are localized around the
fibers of the porous material, thus further reducing qx,x' Finally, in
a porous material it can also be assumed that Fu/P>>qx’X and Eq. II-23

is rewritten as

YPu
DP X _ (_hY -
Dt + 3 (y-1) PF . (11-24)

If the heat transfer rate from the fibers to the air is large enough,

the compressions of the air are almost isothermal, y=l, and

pu
Do, _Lx_ -
e t P 0 : (I1-25)

Equation II-25 is the internal energy equation used in the

perturbation analysis that 1s presented in the next section. For
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high intensity sound the rate of heat transfer increases because of
convection and mixing in the air (see Appendix A) and we assume Yxl
for calculation of the acoustic terms of the perturbation analysis.

Equation II-25 leads to the relation b0=¢PO/p0.
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D. Perturbation Analysis

In the last three sections the conservation equations were de-
rived. In this section perturbation analysis is used to solve dimension-
less forms of the conservation equations for a single boundary condition.
The boundary condition is a second harmonic distorted sine wave. Both
components are of arbitrary phase and amplitude. The boundary condition
is used in an attempt to approximate the measured signals which are des-
cribed in Chapter IV.

1. Perturbation of Conservation Equations
In terms of the total derivative, the three conservation

equations derived in Sections A, B, and C are

1D ._2L§ =0

LD, , (11-26)

pDu u u 2

P—Dt_ + P,x = - OF - M (E) = -F , (II-‘27)
and

YPu
EP_ __?_5 = - E
Dt + P ('Y 1) P F . (11-28)

We remind the reader here that, in a porous material, we will assume
isothermal conditions (y=1). For generality and because y=1 is not
exactly true, we use y # 1 to compute the perturbed wave equations
and, in solution of these equations, set y=1.

The measurement results, presented in Chapter IV, show that
the initial waveform is not a pure sinusoid. The microphone is located
some distance from the source (See Chapter III) and the intense sound

distorts as it travels to the microphone. At high intensities, if the
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level of the second harmonic component is large, it can affect the
propagation of the fundamental component [81]. Excess attenuation of
the fundamental component may occur [16,80], but this is a third-order
effect for an initial sinusoid and can be a second order effect for a
second harmonic distorted sinusoid. Because of the mathematical com-
plexities an unsuccessful attempt was made to derive a third-order solu-
tion of an initially sinusoidal wave.

The second harmonic distorted sinusoid boundary condition is
used in an attempt to describe the propagation of intense sound in a
porous material. The boundary condition is used to introduce both the

first and second harmonics at the boundary

p(0,t) = p'(sinwt + b sin 2wt) (1I-29)

and, since we only consider outward traveling waves, p(»,t) =0, where p'
is the fundamental component amplitude and b is the harmonic component
relative amplitude. Because of more higher harmonics present at the
boundary, Eq. II-29 does not accurately describe the conditions at the
first microphone. This inaccurate description appears to be a source
of problems in the Chapter IV data-theory comparisons.

The first step in the analysis is to make the equation

dimensionless. This is done by using the following substitutions:

A=-L’ U=H, H: P

p c 2

o p C

" u, (11-30)
X="T, 1= wt , and € = -
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where we defined the sound speed ¢ as neither adiabatic ¢, mor isother-
mal bo' In the solution of the equations we let c—*bo. The dimension-

less equations are

UA AU
» T P p
2
AU UAU GlU n,u
L EX N AT S (I1-32)
p P p P
and
Ul v 2210 X ( 13)
M +—22 4 X = (v-1) L7 , I1-
TP P D ey
where o; = O/QOw, n, = nc /pow, and Fl = F/pow. The dimensionless
boundary conditions are
n(0,7) = e(sint + bsin2t) = EIm(eJT-+ bejZT) (II-34)

and N(=,t) = 0.
The solution to these nonlinear equations for a wave traveling
in the material can be found through perturbation. Each of the three

dependent variables are expanded in a power series in € as follows [15]

_ 2 3
II= HO + eHl + € H2 + e H3 + ...,
) 3 (I1-35)
U = Uo + EUl + € U2 + £ U3+ . ,
and
A=A + ), + szA + €3A +
o 1 2 3 e
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where Ho-po/c po-lly, UO-O, and AO-l. These expansions are sub
stituted into both the conservation equations and the boundary condi-
tions. The terms multiplied by like powers of e¢" are then combined to
th
give the n™ order equations.

The first-order conservation equations are

U
X . -
Al,r +' P 0o , (I1-36)
U o U
LTy s LX1.4 (11-37)
P 1,x P
and
Ul
n. 4+ -—=X. g, (1I-38)
1t p

These equations are the small signal conservation equations for a rigid

porous material. Combining Eqs. II-37 and I1-38, to eliminate Ul’

yields the wave equation

HI,TT - Hl,XX + o 1 =0 s (I1-39)

which has been solved by others [23,30,32,33,45,68] and is discussed in

Chapter I. The boundary conditions are
Hl(O,T) = sint + b sin2t and Hl(m,T) =0 . (11-40)

The second-order conservation equations are

Uy 1
- JP SR LD IV (1I-41)
U o.U AU U.U n.u2
2,1, ,, + 12 . 4N Y %,x N ; , (11-02)
P X p p p p

and
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U U yIL,U (Y 1)
m, X o o 1 l.x 11X °1Y ; . (11-43)
top P P P

Combination of Eqs. II-42 and II-43 to eliminate the U2 terms yields the

second-order wave equation

1
- -« -1 + .U
e SIS L P [(Ulnl,x),r 919y
+ II-44
Py T yogup T+ Uy ) ] (T1-44)
-1 (o U2 + 0 U )(Y -1) + (U ) + n U2
P2 171,t s X 171,x

The second-order boundary conditions at x=0 and = equal zero. The
first order solutions are used in the second order equations and then
the second order solutions are found.
2. First-Order Solution
In small signal, first-order, wave propagation, each harmonic
component travels independently, i.e., superposition holds. As in
Chapter I we can assume a pure sinusoid

3(r-rix)

Hl(x,T) = Be » (II-45)

where T, = (B

1 —jal)bo/w. Substitution of Eq. II-45 into Eq. II-39 yields

1

the dispersion relation

Fl =\ /l - jol ’ (11-46)

or, in dimensional form,

2 w2 olmz
(Bl - jul) - + 3 5 = 0 , (11-47)
bo bo
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where we have set c==bo. Equation ITI-47 can be written in terms of

the attenuation

== 14Vl + o% (I1-48)

and the phase

6 =2 Vit Viva? . (11-49)

b vab !
As noted in Chapter I, the phase speed Cipy = w/Bl is
Vb
c R - S
1PH Bl : (11-50)

1+ Ve d?
which we use to describe how fast a wave travels at each frequency. The
phase speed and attenuation are used in Chapter IV to compare the low-
intensity theory and experiment.

The first-order radiation boundary condition (Eq. II-40) is

1,(0,0) = In(ed") + bIm(eJ(ZT-Ht)) : (11-51)
The first order solution of Eq. II-39 is

J(r=Tx) j[2(T—F2x)+ %]
Hl(x,T) = e + be , (I1-52)

where T, = Vl-—jol/Z .

The first order particle velocity function is determined by

using Eq. II-52 in Eq. II-38 to obtain

(=T %) il2¢t-T,x) + ¢]
U, = ?P— e 17 %—P— e 2 . (11-53)
1 2
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We stated in Section C that when y = 1, the acoustic pressure
and density are related by a simple constant bi. In the present case we

find that

Hl =4 . (I1-54)

3. Second-Order Solution
Equations 11-52 through II-54 are used in Eq. II-44 (set y=1)

to obtain

* L2, % i * ]
) b(2P2-P1)[2n1+3T1(F1—T2)] eJ T-(2T2—T1)x+¢

2,11 T T2,xx 12,1 *
2T1T2

. nl \
(--n1 - 34F2F1) JZ(T-TIX)

e
T

s ap .
b(2r ,#T,) (n +i305T ) 3[3r—(2r2+r1)x+¢]
T.T e
12

2 . 2 .
26 (n +316T T ) eJ[A(T—rzx)+2¢]

7
Ty

* 4T j(rir
+ * e

2P1T1

2, % % ] *
b (r2-r2)(—n1+r201) e32(r2-r2)x
*

2F2F2

(I1I-55)

The last two terms of Eq. II-55 are streaming terms and are ignored in

the calculation of an acoustic solution.
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The solution of Eq. II-55 is obtained by first writing the

left hand side differential operator as

2 2
-0 J ] -
L = ;- —5+0 (11I-56)

att oy 1 ot

and then, by using the theory of differential operators [65], the par-
ticular solution is found to be

sle=@r,rxn] 32T 3[3t-2r AT x]
HZP = Qle + Q2e + Q3e

(11-57)
j[4(T-F2x)+2¢>] ,
+ Q4e

where
b(2r P* 2 +'F2 *
Ql ) 8T* 1 F*F ’
1T (1-TT))
, 2
o - jng - 4Ty ,
2 2011"1
(2T 4T.) (n.+330°T )
Q. = - 21 1 31 ,
3 4F1F2(1—P1P2)
and
2b2(jn1—16rzri)
Q4 = 5 (11-58)
201F2
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Since the sum of the particular and homogeneous solutions must satisfy

the boundary condition

M,(0,71) =0 (II-59)

then the homogeneous equation has the form

(o j(2t-2T %)
- JET ) R,e 2" 4 R,e
o1 ~ M1°

j[3(T-F3x)+¢]
I

jlae-r x0+2¢] _
+ Rae ) (I1-60)

where the Ri terms are to be determined by using the boundary condition
Eq. II-59. The propagation parameters are F3 = /If?3517§ and
F4= /ITTEEI7Z . The form of the propagation parameters is determined
by substituting the individual exponentials into the operator [ of
Eq. II-56 and solving the dispersion relations.

We add the homogeneous and particular solutions, Eqs. II-60
and II-57, and substitute the result into the boundary condition. We
find that _R1=Qi and and obtain

*
-j2r,-r)x =i, x\ . -j2r.x  =j2r x> ,
HZ(X,T)=Q1<e 2 17, 1)eJ(T"L‘t’)+QZ<e 1% _ T2 g

( —j(2F2+T1)x j3F ) 5 (31+6)

-j4r . x -34T %\ .
+ e ( 2% _ T3 >eJ(4T+2¢).

+Q4 e
(I1-61)
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To check Eq. II-61 against a similar equation in lossless,
isothermal air we used the substitution P+ 1-3§ and took the limit as
§ > 0. The equations were equal.

Although Eq. II-61 is only of second order, the equation
yields information on four harmonic components. Two of the components
start at nonzero amplitudes, whereas the other two start at zero ampli-
tude. As we shall see in Chapter IV, this representation of the actual
measurement situation is not correct, but, in order to obtain a more
realistic representation of experimental results the boundary condition
would also have to include the third and higher harmonic components.
Although this latter problem is tractable, the mathematics are prohibi-
tive for the relative information that the solution would yield. The
solution has not been attempted.

Figure II-4 shows a case of propagation for assumed values of
the material properties in Eq. II-61. Computer program PERT4PD was
used to generate this plot and is listed in Appendix B. We note several
phenomena illustrated on this plot., We see that the intensities of the
higher harmonics grow with distance and thendecay. The fourth harmonic
is not shown because its level is less than 112 dB. The fundamental
propagates in a linear fashion. The fundamental propagates in a nonlin-
ear fashion at higher sound levels, for both € and b, and for higher
relative nonlinearities n/o. The nonlinear propagation is exhibited by
extra attenuation of the fundamental and more energy being transferred

to the harmonic components. When the initial amplitudes are high
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enough, the second harmonic level exceeds the fundamental level and the
model fails. More discussion is presented in Chapter IV, where we find

the measured data is not well predicted by the theory.
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E. An Approximation to the Impedance and Absorption Properties of
Semi-Infinite Nonlinear Porous Materials
As discussed in Chapter I, several inveétigators [23,32,33,
45,68] have determined relations for the impedance and ahsorption
properties of linear porous materials. Experimentally, the impedance
has been found to change with intensity [47,55,64,86]. In this section
the dimensionless impedance and absorption equatijons are found. for
linearly behaving materials. Because acoustic impedance of porous
materials is frequency dependent, the impedance concept is not
easily applicable to nonlinear systems. Thus, only an estimation
for nonlinear behavior is made for the absorption and impedance.
The acoustic impedance of porous materials is found in
the same manner as in Chapter I. For linear behavior the first order
solutions Ug and Hl, expressed in Eqs. II-53 and II-51 (b=0), are
used in calculating the dimensionless impedance
, <4
1 U
The resistive (real) part is

- 1 / 2
Re(zy) = Jz i+ Vit (11-63)

and the reactive (imaginary) part is

= ll—jO'l . (II" 62)

|-

1+ V1 + Oi ) (II-64)

Im(Zl) = -



These functions are the dimensionless counterparts of Eqs. I-8 and
I-9.

Once the propagation properties of a high-intensity sound
in a fibrous porous material are known, it is advantageous to determine
the impedance that an intense incident wave encounters at the material
surface. The acoustic resistance that an intense sound encounters is
influenced by the material nonlinearity and the amplitude of the sound.
If an attempt is made to solve for the ratios II/U or HZ/UZ’ the
results are complicated functions of the different harmonics and their
relative amplitudes. Although a solution might be obtained by using
the perturbation solutions, it is expected that the result would be
far more complicated than the perturbation analysis and not very useful.
A simpler approximation is presented here.

The following approximation is good only at the air/surface-
interface of a semi-infinite nonlinear porous material. For a sound
traveling in the material the perturbation solutions or one of the
approximations in Section II-F should be used. To avoid the problem of
reflection from the back of the sample, we assume that ol >> 1.

We employ a simple substitution in the approximation. 1In
place of the linear dc flow resistivity 0,» We use the first order

relationship for the nonlinear dc flow resisitivty o +-snl/P/§ . This

1
substitution is similar to that used by Ingard [37] for high-intensity
impedance of Helmholtz resonators. We use the quantity e/v/2 as an

acoustic replacement quantity of the dimensionless dc particle
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velocity udc/bo' We do not want any time or distance dependency
and work only with the appropriate magnitudes. The substitution
of this relationship into Eq. II-62 yields the dimensionless nonlinear

impedance

ZN = Vﬁ - j(014-enl/P/§) > (II-65)

with the resistive and reactive parts becoming

Re(ZN) = 17_ \/l + \/l + (cl+enl/p /f;z (I1-66)
2
and
Im(z ) = —=L \-1+ V1+ (ol+€nllp/§)2 . (1T -67)

V2

For a specific material, the above functions may be plotted
with respect to the parameters of frequency and acoustic Mach number of
the incident sound at the surface. In Fig. II-5 the normal specific
acoustic impedance encountered by a 1 kHz wave at the surface of a
semi-infinite, fibrous porous material is plotted with respect to
the sound pressure level. The magnitudes of both the resistive and
reactive parts of the impedance increase with amplitude. These re-
sults indicate that both the amplitude and phase change of the
reflected wave vary as the amplitude increases. In the analysis
review presented in Section I-C-2 we found that the reflection process
appears to follow the small signal laws up to about 170 dB. In the
test procedure described in Section III-E-2 we find that the results
are reliable up to a sound level of about 165 dB. The comparison

between the theory and data should be appropriate.
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The effect of the increased resistance and reactance on the
ability of the sound to enter the porous material is examined by
studying the absorption coefficient. We can rewrite Eq. I-11 in the

nonlinear dimensionless form
a=1__ZL]:
N 7 ¥ 1 . (1I1-68)
N
The nonlinear absorption coefficient at 1 kHz versus sound

pressure level is plotted in Fig. II-6 for the same material properties

as used in Fig. II-5. The absorption coefficient decreases with
increases in the sound level. When the resistance increases, the
absorption coefficient is expected to decrease. Since the flow resis-
tance increases with sound level, it is harder for the high-intensity
sound to enter the material than for the same frequency low-intensity
sounds.

The increased impedance has two consequences in the absorp-

tion of sound. First, the high-intensity sound cannot enter the
absorbing material as easily as low-intensity sound. Second, once

the high-intensity sound does enter the material it is more rapidly
dissipated than the low-intensity sound. When the level is reduced to

low intensities, the sound asymptotically approaches linear propaga-

tion. The latter effect is noted in the experimental results (Section

IV-B-2) and in the Section II-F approximations.

C- L
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F. Approximations to the Attenuation of an Intense Sinusoid
Propagating in Nonlinear Porous Materials
In this section we present two models for use in approximating
the attenuation of intense sinusoids in porous materials. The linear
are intimately related by

impedance Z, and propagation parameter T

1 1

Eq. II-62. Because of this relation, we can use the approximation of
Eq. II-65 to model how the propagation parameter of an initially
sinuoisdal wave changes with intensity. We may also analyze the
propagation of an initially sinusoidal wave by modeling how energy is
lost from the fundamental component as a function of sound level. The
mathematics of each model is simple and the models are easy to use. The
impedance model is presented first.

1. Impedance Model

We can write the dimensionless propagation parameter as

T, = B, - jA (I1-69)

where the dimensionless attenuation A1 = albo/m is given by Eq. II-63
and the dimensionless wave number Bl = Blbo/w is given by Eq. II-64,
The resulting equations are analogous to Eqs. I-4 and I-5.

Again, the substitution of o 4—€n1/P/§ for o, is used to

1 1

replace the linear equations with

Tm(I‘N) = AN = - fi_ \ﬁl+ \/l+ (01+En1/P/§) 2 (I1-70)
2

for the attenuation and

Re(l"l) = BN = ﬁ \/;+ \/1+ (01 +enl/P/2_) 2 (11-71)
2 .
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for the wave number. The dimensionless phase speed Cth/b0 = 1/BN is

Cth - Y2
b .
° \[+ ‘/1+(°1+€”1/P’/2—)2

We conclude that both the phase speed and attenuation change

(11-72)

with intensity. Because of the interaction of the harmonic components,
measurement of Cth/bo is difficult; one cannot differentiate between
actual phase speed reduction and harmonic interaction. Of course,

the effects of the interaction may be to slow as well as attenuate the
fundamental component. In some of the experimental results we measured
an apparent slowing of the fundamental, but, because of the limited
data, we do not present the results in this study.

In Fig. II-7 the amplitudes of waves propagating in porous
materials are plotted versus distance. The solid line indicates the
effect of linear attenuation. The dashed line indicates the effect
of nonlinear attenuation (Eq. II-70). We have used exp[fANdx] to
determine the amplitude attenuation. The attenuation is more répid
where the intensity is highest. The difference in the attenuation is
called the excess attenuation. In Chapter IV the approximation,

Eq. II-70, is compared to the perturbation solutions and data.
2. Amplitude Attenuation and Saturation Model

Excess attenuation of the fundamental component of an initial-
1y sinusoidal wave may also be modeled by a simple rate equation, which
includes the decay of the fundamental component due to nonlinear effects

as well as the direct decay due to small signal dissipation. We base
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our model on the concept that, at high intensities, the fundamental
loses energy in a consistent manner, regardless of the medium.

In Chapter T we found that the rate of harmonic component
generation depends on the amplitude of the original sinusoid and on the
thermoviscous attenuation of the fluid medium [16]. The harmonics are
generated at the expense of the fundamental. If the rate of harmonic
generation is high enough and the attenuation low enough, a shock will
form. The presence of the shocks increases dissipation because losses
are large at the shocks. Energy is lost by all the harmonics. Thus,
we find that the greater the amplitude of the original sinusoid, ‘the
quicker the fundamental loses energy.

If we measure the sound level of an intense fundamental
component at some remote distance from the source, we will find a
nonlinear relation between the source level and remote level. Because
the overall decay of the fundamental depends on the scurce level, the
remote sound level depends on the source level, the small signal attenu-
ation, the nonlinearity of the medium, and the distance from the source.
A 1imit in the remote sound level, which is called the saturation level,
is a function of the above variables. The excess attenuation, linear
region, approach to saturation, and saturation level are all illustrated
in the sketch of the amplitude response plot in Fig. IT-8., In Chapter
IV we present data showing the approach to saturation. We model the
saturation effects in the following analysis.

The excess attenuation that the fundamental component of a

sinusoidal wave encounters in a porous material may be modeled by
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considering the two factors causing attenuation of the fundamental
component. Others [4,57,76,80,81] have used this method to explain
saturation effects in plane waves traveling in an alr-filled tube.
Ordinary small-signal decay dominates attenuation at low intensities

and is described by
Py = P& s (I1-73)

where Py is the pressure amplitude of the fundamental component, P,
is the initial pressure amplitude of the fundamental component, and
x is the distance from the source. The decay rate equation associated

with Eq. II-73 is

dp1
= = "oP; . (II-74)
Nonlinear effects dominate the attenuation at high intensities
and loss of energy from the fundamental harmonic component depends on
intensity. Webster and Blackstock [81] made measurements and confirmed

that the pressure amplitude of the fundamental component in the sawtooth

region is

2po
pl = l+0* s (II-?S)

where o* > 3, Their assumed boundary condition is that the wave starts
as a sawtooth. Since o* = x/x and o*%> 3 the pressure relation is
approximately plal/x.and the decay rate equation associated with

Eq. II-75 is

P12

Ix Py . (11-76)
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Our measurement results of intense sound propagating in a
porous material have shown that excess attenuation exists. We also
found that shocks do not form in a porous material. In spite of the
lack of shock formation, the approach to saturation appears to be the
same as that found in air. We propose that the high-intensity decay

rate equation in a porous material is

2
b P
Fr , (11-77)

where T is an unknown coefficient dependent upon the nonlinearity
of the medium and the fundamental component frequency. The coefficient
T may be defined from either saturation or propagation tests. In
Chapter IV we define T in the saturation tests.

Let us assume that the two rates of decay, Eqs. II-74 and
II-77, may be added to obtain the overall decay at any pressure P,e

We obtain the relationship

2
dpy Py
Tx - TP T T , (11-78)

whose solution satisfying the boundary condition P;=P, at x=0 is

-ax
p e
Py = ° . (11-79)

1+—p0(1-e_ax)/aT

Equation II-79 is used in Chapter IV to describe both saturation and
propagation of intense sinuoidal waves.
Equation II-79 is generally useful. At low source amplitudes

P, << oT Eq. II-79 reduces to Eq. II-73, At high source amplitudes
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po>> aT and Eq. II-79 may be used to calculate the saturation level.
As P, Increases without limit Py reaches the saturation pressure and

Eq. II-79 becomes independent of P, The saturation pressure is

-oX
p. = oTe (1I-80)
1s (1-e ax)

At low attenuations a—+ 0 Egq. II-79 reduces to pl+-po.

From the above analysis, we conclude that the three variables
T, o, and P, help us define how a sound wave attenuates. In Chapter I
we found that the Gol'dberg number G=B'ek/a or B‘pok/apocoz, is used
to define the relative effects of attenuation and nonliner distortionm.

We conclude that, for a porous material, a Gol'dberg type number may be

defined from Eq. II-79 as

G == . (11-81)

We can use Eq. II-81 to describe when nonlinear effects become important
to the propagation of intense sounds in a porous material. As G-~
nonlinear effects become dominant and as G+ 0 attenuation effects
dominate. 1In Chapter IV we determine T and relate T to the relative

nonlinearity of the material n/c and the frequency f.
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G. Summary

In this chapter the propagation of sound in and the impedance

of porous materials have been modeled. At low intensities the theory

presented here agrees with work done by others. At high intensities

harmonic components of the fundamental are generated and the attenuation

of the fundamental component is increased. The increase in flow
resistance at high intensities is found to effectively increase the
impedance of the materials. The impedance increase makes it more
difficult for a sound to enter and propagate in the material.

In the next chapter, Chapter III, the methods for testing
and evaluating porous materials are discussed. 1In Chapter IV the
results of Chapter II aré compared to data obtained from the experi-

ments and conclusions about the theoretical methods are discussed.
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CHAPTER III

EXPERIMENTAL METHODS

This chapter contains a description of the experimental methods
and physical apparatus that were used to determine the properties of the
bulk porous materials. The chapter 1s divided into the following
sections:

A, Porosity

B. Material Structures

C. DC Flow Resistivity

D. Acoustic Propagation Parameters

E. Specific Normal Acoustic Impedance

F. Summary
A, Porosity

The porosities of the various materials were determined by
using the following procedure. The density of each sample was deter-
mined by carefully measuring the sample and weighing it on an analytic
balance. The density of the skeleton material was determined from the

literature or the manufacturer. The porosity was determined from

where m and V are the measured mass and volume, respectively, of the
sample and D is the density of the solid material. The porosity ranges
of the various materials used in the present study and some densities

for the solids of acoustical materials are listed in Table ITII-1.
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TABLE III-1
A LIST OF THE POROSITY RANGES FOR THE SAMPLES USED IN THE PRESENT
STUDY AND DENSITIES OF VARIOUS ACOUSTICAL MATERIALS

Material Density Range ' Porosity Range
D,kg/m3 P

Kevlar 29 aramid [90]

(an aromatic polyamide) 1439 + 30 0.985-0.809
Polyimides [50] 1439 —
Scottfelt 900-Z [89] 1153 + 32 0.942-0.853
Polyurethane Plastic [50] 1107 - 1246 0.971
Glass (minimal binder) [50] 2518 - 2601 0.982
Aluminum [50] 2600 - 2900 ——
Steel [50] 7400 - 7800 —
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Beranek [6] devised an instrument to measure the porosity di-
rectly. A device of this type was built for the present study. The
device is not as accurate and the measurements are not as repeatable as

the weight method described above.
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B. Material Structures

The material structures were determined by photographing the
materials with a camera-bellows combination. TFiber size and material
structure are useful in determining the material properties. Photos
of the Kevlaé329 (manufactured by du Pont de Nemours & Co., Wilmington,
DE) and the Johns-Manville 1000 (J-M 1000) fiberglass (supplied by
Johns-Manville) are shown in Fig. III-1, of the Scottfelt 900-Z-2
(supplied by Scott Paper Co., Foam Division, Chester, PA) and the
Blachford Acoustical Fbam (BAF) (supplied by H. L. Blachford, Inc.,
Corona, CA) in Fig. III-2,

We see that the Kevlar 29 fibers are larger (12 um) ﬁhaﬁ the
glass fibers (10 um). The structural members of the two foams are
larger than the Kevlar fibers. The Séoétfelt has an effective diameter
x40 um (215 um) andrthe BAF effective diameter ranges between %9 and
140 uym (we use 75 uﬁ in later calculatiqﬁs). The BAE has "window

panes,"

which partially close off some of the cells of the foam. ‘The
BAF is a partially reticulated foam,rwhergas the Scottfelt is a fully

reticulated foam, i.e., the Scottfelt has no "window panes."
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C. DC Flow Resistivity

In Chapters I and II the dc flow resistivity ¢ of a porous ma-
terial was shown to be important in determining the acoustical properties
of a porous bulk absorber. In Chapter II, Eqs. II-9 and TI-10, we found
that the flow resistivity can be measured in dc flow tests. The
measurement method is straightforward and follows the ASTM standard [2].
The details of the particular measurement system used here are pre-
sented,

A block diagram of the measurement system is shown in
Fig. III-3. The porous samples were carefully cut and placed in the tube,
which was made of clear Plexiglas. The clear plastic enables the ex-
perimenter to accurately measure the material length at any flow rate.
The in place length measurement is important because some materials
tend to compress with an increase in flow rate. If the compression
goes unnoticed, an anomolous measure of the flow resistivity is ob-
tained. Most samples were 7.7 cm in length. The sample was held in
place between a fixed screen and a moveable screen. Each screen was
made of standard % in. hardware cloth. The sample was located so that
its ends were at least 5 c¢cm from the intake and exhaust ports in the
tube end pieces. There was then a fairly even flow across the surface
of the sample. Great care was taken to avoid flanking, that is, flow
around the outside of the sample. If flanking was noticed, it was
stopped by inserting thin plastic sheets between the tube wall and the
material. Corrections for the presence of the plastic sheets were

then made in calculating the flow resistivity.
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Five flow meters were used to measure the velocity of the
flow. The meter types and ranges are listed on Fig. III-3. The meter
ranges overlapped and the total range of particle velocity measurement
was from 7-10-4 m/s to 1.6 m/s. Flow rate measurements at the lower
end of each flowmeter range tended to be in error by up to #12%. 1In
the least squares fit of the data this error was minimized because of
the many measurements taken and becéuse of the data overlap.

Three manometers were used to measure the pressure drop
across the sample. The manometer types and ranges are listed in
Fig. ITI-3. The range of pressure measurement was from 5 Pa (5'10-Satm)

to 7700 Pa (0.076 atm).
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D. Propagation Parameters

First, attenuation a (nepers/meter) and phase 8 (radians/
meter) were measured in a square duct at low sound intensity for the
various porous materials used in this study. From the phase measure-
ments the phase speed was calculated. A simple two microphone method
was used. Several different types ofrlow—intensity sound signals were
used and gave comparable results. The system and measurements are dis-
cussed in subsection 1 below. The high amplitude sound testing was
done with the same experimental system, but only pulsed sinusoids were
used as signals. These measurements are discussed in subsection 2 be-
low.

1. Propagation at Low Intensities

Measurements of the small-signal propagation parameters were
made with the maferial to be tested in a traveling wave tube., A block
diagram of the propagation parameter measurement system is shown in
Fig. ITI-4. See Appendix B for detailed drawings of the system. The
Bruel and Kjaer type 4136 microphones (% in. diameter) were placed in
holes in the tube wall. The microphones were recessed (z 4 mm) from
the material surface. The remote microphone was vibration isolated |
(see Appendix B). Vibration isolation for the source microphone was
found to be unnecessary. Measurements were taken at several microphone
separations d (see Fig. III-4). Unused microphone holes were plugged
and sealed. The material length was such that reflections from the far
end of the material were unimportant [o(L-d)>> 1]. The passband of the

James B. Lansing 375-H (aluminum diaphragm) acoustic driver was
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approximately 0.25-8 kHz. The upper limit of the useful frequency range
of each tube is the first cross mode cut-on frequency in the material.
The cut-on frequency depends on the material and is between 5 and 9 kHz.

The propagation parameters o and B were measured by using
several excitation signals, broadband noise, narrowband noise, sine
sweep, pure tone, and tone bursts (the tone bursts are described in the
next subsection). In each case the fast Fourier transform (FFT) spec-
trum analyzer was used to display the waveforms, spectra, and transfer
function. The different excitation signals gave equivalent results and
the transfer function of the broadband noise signal between the micro-
phones was used to determine most of the small signal propagation
parameters.

2, Propagation and Saturation at High Intensities

The experimental setup in the high-amplitude sound propagation
testing was the same as described in Section B-1. Because of the
limited steady-state power handling capabilities of the driver (= 25 W),
the high-amplitude sounds could only be achieved by using unfiltered
pulsed sinusoids. The maximum pressure amplitude was limited
by the power output of the amplifier (200 W at 70 Vrms). It was
felt that the drivers would be capable of handling this power as long
as the duty cycle was very short [64]. It turned out tkat one driver
failed after several thousand pulses and a second started to generate
unwanted harmonics after several thousand pulses. In each case the
voice coil separated from the diaphragm. In the first case the coil
distorted, rubbed the magnet, and shorted out. The sound pressure

levels of the fundamental component obtained were up to 173 dB at 1 kHz,
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170 dB at 2 kHz, and 172 dB at 3 kHz. These values were obtained by
driving the amplifier up to its clipping limit (100 V peak ampli-)
tude). The pulse length was 0.004 to 0.005 seconds, and at least five
pulses were averaged by the Fourier transform analyzer. The second
harmonic distortion of the microphone system is =2.,5% at 173 dB SPL,
i.e., the second harmonic component introduced by the microphone system
is 141 dB [20]. Above 170 dR the measured second harmonic distortion of
the waveforms ranged from 7-25%7 at the source microphone.

Two types of tests were made. The change of the amplitude
of the harmonic components with distance was measured, During the
same tests the distance was fixed and the change of the amplitude of
the harmonic components with increase in the source level was measured.
At each frequency the sound levels were started at 120 dB and increased
in 5 or 10 dB steps until the maximum level was obtained. The latter
study shows the approach to saturation of a wave traveling in the
material. The phase change with amplitude between the components was
also measured. The test results indicate how sounds propagate in
porous materials with respect to distance, frequency, amplitude, and
material attenuation and nonlinearity. An interesting point is made
here about the waveforms: Even at very high intensities very little
distortion of the waveform was seen; most waveforms were sinusoids or
slightly distorted sinusoids. This slight distortion may be inferred

from the spectrum measurements presented in Chapter IV,
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E. Specific Normal Acoustic Impedance

Specific normal acoustic impedance was measured by using a
standard standing wave impedance tube for the low-intensity tests [1]
and single cycle sine wave tone bursts for the high-intensity tests [47l
The low-intensity tests are discussed first.

1. Impedance at Low Intensities

Specific normal acoustic impedance at low sound amplitudes
was measured with two standing wave tube systems; one for low frequen-
cies and one for high frequencies. The block diagram of the basic
measurement system is shown in Fig. III-5, The low-frequency (0.1-

1.3 kHz) tube had been constructed years earlier and is described in
Ref. 71. The high-frequency (0.8-3.9 kHz) tube was designed for this
project. Construction drawings for it are included in Appendix B.

The test method follows ANSI/ASTM C384—?7[1]. The equipment
was calibrated by using a tight-fitting aluminum plug (5 cm long) in the
high-frequency tube and a thick steel end-cap, sealed around the edges,
at the end of the low-frequency tube. In each case the termination was
assumed to be of infinite impedance and the distance between the micro-
phone and the termination was acoustically measured at each test fre-
quency. The calibration results were used to correct for the environ-
mental effects (such as tube wall attenuation, effective microphone
position, etc.) in calculating the material impedance. In the high-
frequency tube the probe position can be located to within *0.! mm and
test results are very repeatable. In the low—freqpency tube the micro-
phone location can be determined to within *4 mm and the error affected

the measurement accuracy.
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Materials of various types and thicknesses were measured in
each tube, but the most common thickness was approximately 7.7 cm. (For
checking the reliability of the single-cycle pulse measurement method,
described next, a 30.7 cm thick sample was used in the high-frequency
tube.)

2. Impedance at High Intensities

The single cycle tone burst test used here is a simple and,
apparently, unique method for measuring the impedance of bulk acoustic
materials at high intensities. There are several reasons for using a
tone burst to measure the high-intensity impedance. We have already
discussed several reasons in Section I-C-2,

As sound intensity increases in a standing wave tube nonlinear
effects become evident. Distortion and shock formation cause the method
to fail because the waveshape and amplitude change as the wave travels
toward the sample and again after reflection. The properties of intense
standing waves are much harder to predict than those of intense
traveling waves. If the sample behaves nonlinearly, additional wave
distortion is introduced at the material surface and separation of the
nonlinear effects becomes extremely difficult.

We can limit the noticeable nonlinear effects on the
traveling wave by using a tone burst. As we shorten the tone burst
less travel distance 1s necessary to resolve the incident and reflected
waves at the microphone. As the amplitude increases, the shock for-
mation distance is reduced, according to X=1/8"'ck, and the waveform

distorts at a faster rate [16]. When X< x, where x is the travel
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distance, a shock is formed in the calibration signal and the

measurement method is no longer reliable.

The assumption on which the test method is based is that, as
long as a shock is not formed, the attenuation of a wave as it travels
down the tube and is reflected from the termination will proceed in an
almost linear fashion [16]. The calibration tests at the wvarious
amplitudes and frequencies can be used to cancel out any small excess
attenuation encountered by the fundamental in the production of the
higher harmonic components.

A block diagram of the measurement system is shown in
Fig. III-6. The mirophone was placed to minimize the travel distance
of a 1 kHz single cycle tone burst. The useful frequency range is
1 kHz (set by tube length) to 4 kHz (set by cross-modes). The sound
level limits are dependent on tube length and frequency. When
X=x=96.4 cm, the sound level upper limits are, for 1 kHz, 167 dB and,
for 4 kHz, 155 dB.

The polarity of the signal 1s such that a 165 dB, 1 kHz
single cycle sine wave, shown in Fig. III-7.A, is produced. The fre-
quency spectrum of the signal is shown in the right column. In
Fig. III-7.B an ideal single cycle sine wave and its spectrum are shown.
By comparing the waveforms in Figs. III-7.A and III-7.B, we find that
the actual signal is asymmetric and contains an extra '"tail." The
"tail" is formed by high frequency cross-modes that are generated in
the tube and travel at different phase speeds than the tone burst.
Both the asymmetry and '"tail" affect the frequency spectrum by adding

more low-frequency and high-frequency energy. The high-frequency lobes
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of the actual signal are not as uniform as for the spectrum of the ideal
wave. In addition, the peak frequency is approximately 100 Hz lower
than for the spectrum of the ideal wave. If the analysis is done in

the frequency domain, then this exfra energy can cause severe problems
which could lead to erroneous analysis. We restrict our analysis to
measuring the peak-to-peak amplitudes of the waves and the time delay.

The waveform polarity was chosen such that, as the wave
travels, a shock forms at the center. If the wave is symmetric, all
three axis intersection points will travel at the adiabatic sound.
speed <, and the frequency spectrum peak will not shift. The waveforms
are asymmetric and after a shock forms the relative time delay is un-
certain. If the waveform polarity was reversed, shocks would form on
each end of the wave and the frequency spectrum would shift as a
function of amplitude.

In Fig. ITI-7.C the incident wave of Fig. III-7.A is shown
after it was reflected off an aluminum termination. The waveform has
almost formed a shock. The associated frequency spectrum shows that
energy has been shifted to the higher frequencies. The wave 1s on its
way to forming a single cycle sawtooth waveform. In Fig. ITI-7.D an
ideal single cycle sawtooth waveform and spectrum are shown. We see
that the spectrum in Fig. III-7.C shows that the reflected wave is
partway between the ideal waves shown in Figs. I1I-7.B and III-7iD.

For higher frequency tone bursts the spectra are influenced
more and more by the "tail." The resulting frequency spectra tend to

"smear" and a localized frequency peak is not definable. TIf the "tail"
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is cut off, the peak is more localized, but other high frequency com-
ponents are introduced by the cutting operation.

In this testing program we measured (1) the time delay be-
tween the incident and reflected wave-center zero crossings and (2) the
change in peak-to-peak amplitude. The ANSI/ASTM C384-77 test method
[1] was modified to deal with traveling waves. The amplitude change was
used to determine the material absorption coefficient and the delay time
was used to determine the phase shift. The impedance was calculated
from a combination of the amplitude change and the phase shift. The
system was calibrated by replacing the material with a tight-fitting
aluminum plug and by assuming that the measurement results indicate an
infinite impedance. In the experiment, shock formation caused excess
attenuation of the traveling wave. Past the shock formation distance
calibration canceled some of the excess attenuation, but not all of it.
In our case, asymmetry of the waveform (the positive pressure magnitude
is greater than the negative pressure magnitude) caused the shock to
propagate faster than the speed of sound and the associated phase shift
could not be computed past X. This waveform asymmetry is caused by
inertia of the driver diaphragm.

The advantages of this measurement method over other measure-
ment methods [59,64] are that the travel distance is short and the tone
burst does not lengthen as it travels [16]. In addition, as the shock
forms, the tone burst spectrum changes only a moderate amount. This
spectrum change is illustrated in Fig. III-7 for both the ideal and

measured signals [18]. Finally, the material needs only to be long
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enough that a wave reflected from the material termination does not
interfere with the wave reflected from the material surface.

The disadvantages of this measurement method are that it is
amplitude limited and the waveform tends to be asymmetric. In addition,
the spectrum is not that of a pure tone, but narrowband (see Fig. III-7,
where, ideally, the -3 dB bandwidth is 0.74 fp and -6 dB bandwidth

1.1 fp, where fp is the nominal frequency peak in the spectrum),.
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F. Summary

The various measurement systems and methods for the deter-
mination of porous material properties have been described. The topics
covered have been on determination of porosity, material structures,
dc flow resistivity, propagation parameters, and impedance.

In Chapter IV the measured material properties are compared to
theorétical results from Chapters I and II. The dc flow resistivity
results are found to depend on the porosity and particle velocity in
the expected manner. The material structure has definite effects on
the acoustic measurement results. The low-intensity and high-intensity

results are illustrative of the topics discussed in the previous chapters

|
E
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CHAPTER 1V

EXPERIMENTAL RESULTS

In this chapter data from experiments are compared to results
of the theory developed in Chapters I and II. The objectives of this
chapter are to illustrate the acoustical properties of porous materials
with changing sound level and to determine how accurately the experi-
mental results can be predicted by using the theoretical models. A
variety of materials was used in the various tests and, whcre reason-
able, representative results from the tests for each material are
presented. Generalizations are made for various materials and limita-
tions of the theories are discussed.

In Section A we present measured and predicted results and
discuss (1) the linear and nonlinear dc flow resistivity coefficients,
(2) the applicability of the previously derived dependence of flow
resistivity on porosity, and (3) the applicability of the modified
Reynolds number in predicting nonlinearity threshold. The results of
Section A are used in the calculations of Sections B and C.

In Section B we present measured and predicted results and
discuss (1) the small signal attenuation and phase speed, (2) excess
attenuation and the approach to saturation, and (3) high-intensity

propagation.

107



In Section C we present measured and predicted results and
discuss (1) the small signal impedance for finite and semi-infinite
porous materials, and (2) the impedance change of semi-infinite
materials with sound intensity.

In Section D we summarize the results of this chapter.
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A. DC Flow Resistivity

The physical measurement apparatus and method used to
determine the dc flow resistivity of porous materials is described in
Section ITI-A. After first presenting the flow resistivity data
and determining the nonlinearity, we then discuss how well the empiri-
cal models fit the data.

1. Flow Resistivity Determination

Flow resistivity data were taken in a particle velocity range
of 2010-4-2 m/s. From a least squares fit of the data the coeffi-
cients o and n were calculated; see Eq. II-10.

In Fig. IV-1 the measurea dc fldw resistivities for five
porosities of Kevlar@)29 are plotted versus dc particle velocity.
Each sample was 7.7 cm in length. For the three highest porosities,
at particle velocities above 1 m/s, the data have been corrected for
the small length compression thaﬁ occurred. The compression had no
measureable effect on the porosity, but noticeably affected the
resistivity because the resistivity is inversely proportional to the
material length. This material exhibits linear flow resistivity for
most of the test velocity range. As discussed in Chapter I, all porous
materials are expected to exhibit nonlinear behavior for particle
velocities above some threshold value, ThewKevlar 29 fiber diameter
is 12 um and we use Eq. I-27 to calculate the nonlinearity threshold
(Rm==1) to occur at 0.099 m/s for p=0.980 and at 0.40 m/s for
p=0.918. The theoretical thresholds are indicated by the vertical

bars on the figures. In comparing the predicted threshold particle
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velocities with the points at which the curves actually start to turn
up we see that the nonlinearity threshold 1is not precisely predicted by
the modified Reynolds number at the lower porosities. The measured
deviation from linear behavior is 2% for p=0.980 at 0.099 m/s and

7% for P=0.918 at 0.40 m/s. Though slightly inconsistent, the
predicted and measured thresholds are in general agreement.

In Fig. IV-2 the measured dc flow resistivites for three
different Scottfelt samples are plotted versus dc particle velocity.
Each sample was approximately 7.7 cm in length. These materials did
not compress with increase in particle velocity. Scottfelt exhibits
linear flow resistivity behavior over as wide a particle velocity
region as Kevlar. Even though the Scottfelt is not fibrous, we assume
the effective "fiber" diameter of the foam material to be 40 um
(Fig. III-2). We calculate thenonlinear threshold to occur at 0.086
m/s (3% deviation) for 900-Z-2 Scottfelt (P=0.942) to 0.218 m/s
(7% deviation) for 900-Z-6 Scottfelt (P=0.852). As withtthé Kevlar
the estimate based on Rmt 1 is reasonably good.

In Fig. IV-3 the measured floW resistivities for ;worpieces
of Blachford Acoustiéal Foam (BAF), Johns-Manville 1000 (J-M 1000)
fiberglass, and Globe-Albany (G-A) needled and felted Kevlar 29 are
plotted versus dc particle velocity. The two fibrous materials,
Kevlar 29 and fiberglass, are linear over most of the particle velocity
range. The BAF exhibits nonlinear behavior at a relatively low
particle velocity. Although the two BAF samples were taken from areas

within a half meter of each other in the same 7.6 cm thick sheet,
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the flow resistivities of the two samples were different by a factor
of 2-4, This result illustrates that, for foams, variations

that are not discernable can drastically influence the flow resistivity
properties. In turn, the acoustical properties may also be expected
to vary drastically. The porosities of each of the many BAF samples
tested were measured to be 0.971 *0.001. The small porosity range and
large flow resistivity range indicate that structural factors are
important. The fiberglass fiber diameters are approximately 10 um,
the G-A Kevlar 29 fiber diameters are approximately 11 um, and the
foam "fiber" diameters range from 31 um through 140 um, (75 um was
used in the calculations). The calculated nonlinearity thresholds
based on Rm= 1 are for the J-M 1000 fiberglass 0.11 m/s (0.1% devia-
tion), for the G-A Kevlar 0.32 m/s (5% deviation ), and for the BAF
0.023 m/s (Low 7% and High 12.5% deviations).

In addition to the large "fiber" size, the low threshold of
nonlinearity found in the BAF may also be partially explained by the
material structure. The BAF is a partially reticulated material,
meaning that some of the spaces between the structural members have
thin membrane window panes. The window panes obstruct the flow and
make the flow turbulent at a lower particle velocity than the average
fiber size 75 um indicates. The measured nonlinearity threshold is
still reasonably close to the predicted value. The windows cover less
than 257 of the foam openings. The threshold is therefore lowered only
a relatively small amount. A material with a higher percentage of

closed windows would be expected to have both a lower nonlinearity
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threshold and a higher flow resistivity. This statement is supported
by the fact that the fully reticulated Scottfelt has a high nonlinearity

threshold and is of the same structure as the BAF but without window

panes.

The dc floﬁ‘resistivity data presented here shows that most
materials behave nonlinearly and illustrates the relative dc nonlinear-
ities of the various materials. The least squares data fit is a good
descriptor of both the linear and nonlinear regions of the flow
resistivity. For most of the materials, Carman's analysis of the
location of the threshold of nonlinearity is reasonable in the
porosity region 0.8<P<1.0. From the previous measurement results,

a general rule of thumb would be that Carman's modified Reynolds number
predicts the nonlinearity threshold of fully reticulated materials to
be in a region of between 27 and 7% of the flow resistivity deviation
from linear. Table IV-1 lists a summary of the linear and nonlinear dc
flow resistivity coefficients and the relative nonlinearities of the
materials used in this study.

2. Linear Flow Resistivity Prediction

Hersh and Walker [ 33,34] presented two>equations for use in
predicting the linear flow resistivity of fibrous porous materials;
see Egqs. I-12 and I-17. One equation can be used for calculating flow
resistivity for flow axially along the fibers (the axial condition
was not realized in our measurements). Both equations can be used
for calculating flow resistivity for flow normal to the fibers. Each

equation has an empirical constant so that different material types
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TABLE IV-1

LINEAR AND NONLINEAR DC FLOW RESISTIVITY COEFFICIENTS

AND RELATIVE NONLINEARITIES OF BULK POROUS MATERIALS

Material, Linear DC Flow Nonlinear DC Flow Relative
Porosity P Resistivity Resistivity Nonlinearity
Coefficient Coefficient n/o

g, MKS Rayls/m n, MKS Rayls/sec

Batted
Kevlar
0.980 10800. 2370. 0.219
0.971 19100. 3860. 0.202
0.956 33700. 7930. 0.235
0.940 51200. 11400. 0.223
0.918 83G00. 14300. 0.172
Scottfelt
0.942 13400. 5350. 0.399
0.884 49200. 16500. 0.335
0.852 66500. 21500. 0.323
G-A Kevlar
0.940 83000. 12000. 0.145
J-M 1000
Fiberglass
0.982 25500. 220. 0.0086
BAF
0.970 6390. 27000. 4.23
0.971 3900. 12000. 3.08
0.972 8260. 43600. 5.28
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may be dealt with. The two curves have been fit to measured data

for batted Kevlar 29, as shown in Fig. IV-4. The solid curve is for
Eq. 1-12 and the dashed curve for Eq. I-17. The constants were chosen
for a best Chi-squared fit to the five data points. Both curves fit
the data points very well in the region of interest. For batted
Kevlar 29 Hersh and Walker found that g=0.059 fit their low frequency
acoustic equation [33]; here we find g=0.061. Hersh and Walker

found Vn==0.44 [34]; here, Un= 0.445. In the first case the small
difference in values arises from the fact that Hersh and Walker's

single data point was fit to an approximate acoustic equation and not

to dc flow resistivity data. In the second case the agreement is
excellent and supports Davies' [24] analysis which was done with a

variety of materials. 1In Fig. IV-5 the measured dc linear flow

i resistivities for several samples of each of the other materials are

plotted versus the porosity. The two curves, generated from Eq. I-12

(solid line) and Eq. I-17 ( dashed line), show the best Chi-squared

fits to the Scottfelt data; the fits yield g=0.0166 and Vn= 1.39.
The single data points for the other materials yield g=0.029, and
Un==0.923 for the J-M fiberglass and g= 0.043, and Un= 0.605 for the
G-A Kevlar.

The values of g and Vn are not the same for all materials
because of the vast differences in the material structures. The foams
are, by no means, fibrous, the fiberglass fibers tend to bunch together
(see Fig. III-1) and the G-A Kevlar does not have long, parallel

strands normal to the flow. These structural effects all influence
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the way the flow is impeded by the material. Each material type must
therefore be measured separately to determine both g and Vn.

In this section it has been shown that, in the region
0.8<P<1.0, once a dc flow resistivity, fiber diameter, and porosity
have been determined, the change of the dc flow resistivity with
porosity can be correlated to either Eq. I-12 or I-17. 1In the next
section both measured and predicted dc flow resistivity values are
used to calculate the small signal propagation of sound through the

porous materials.
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B. Propagation
The results of three sets of measurements, and comparison with
theoretical predictions, are presented in this section. Subsection 1
is about low-intensity propagation, Subsection 2 excess attenuation and
the approach to saturation, and Subsection 3 high-intensity propagation.
Measurements were made on two materials, batted Kevlar 29 and
% BAF. The Kevlar is of greatest interest because of its high non-
| linearity threshold and the large range of porosities to which it can
be compressed. The BAF is of interest because of its different struc-
ture and low-nonlinearity threshold.
1. Propagation at Low Intensities

Measurements of low-intensity propagation were made in a ma-

terial filled plane wave guide, as described in Section III-D. 1In
general, broadband noise in the range 0.1-10 kHz was used to determine
the propagation parameters o and B. The phase B was then used to cal-

culate the phase speed c Measurements made with 1, 2, and 3 kHz tone

PH®

: bursts corroberated the noise measurements.

A highly magnified picture of batted Kevlar 29 is shown in

: Fig. III-2. The fibers are very small (212 um) and the material is very

porous. The porosity range used in the propagation tests, 0.985>P>0.809,

was large enough to enable us to test the theory over a wide range.
InFig. IV-6 the predicted and measured attenuation of sound in

batted Kevlar 29 (P=0.980, 0.956; 0.916, 0.875, and 0.809) is plotted

versus frequency. The horizontal bars show the range of the measured

data points. Where no horizontal bars are drawn, either the data points
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coincide, or only one data point was measured. The symbols indicate the
average value of up to seven measurements at various microphone separa-
tions. The scatter in the measured values is due to inhomogeneity of the
material. Since several microphone separation distances were used, the
results therefore depended on the material homogeneity between the two
microphones. The results of material inhomogeneity are seen later in
the amplitude versus distance plots.

In the theory we assumed the isothermal sound speed. 1In
Appendix A this assumption is shown to be inexact, In Fig. IV-6 the
solid line indicates the theoretical attenuation when the adiabatic
sound speed is used in Eq. I-4. The dashed line indicates the iso-
thermal sound speed case. Since dc flow resistivity measurements were
made for only five porosities (P>0.914), Eq. I-12 (g=0.061) was used to
calculate the unmeasured resistivities (P=0.916, 0.875, and 0.809).

At each porosity there are frequency ranges where the data
and predictions agree and other ranges where they diverge. The di-
vergence of the data above 2 kHz at porosities 0.980 and 0.916 is of
unknown origin but was confirmed by measurements at several microphone
positions. At the low porosities, P<0.916, there is a leveling off of
the attenuation at low frequencies. We cannot explain this low porosity,
low frequency attenuation. Other researchers [33,34,&9] limited their
measurements of batted Kevlar 29 to P>0.9 and did not observe this
phenomena.

From the arguments in Appendix A, the attenuation at the
lowest porosity, P=0.809 is expected to be very close to the isothermal

(dashed) line. The data in Fig. IV-6.A show otherwise. One possible
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explanation is that the flow resistivity o is overestimated by Eq. I-12
in this porosity range. We shall return to prediction of the effective
acoustic flow resistivity later in this section.

In Fig. IV-7 the predicted and measured phase speed of sound
in batted Kevlar 29 (P=0.980, 0.956, 0.916, 0.875, and 0.809) is
plotted versus frequency. The dashed lines were calculated by using
Eq. IV-6. The solid line were calculated by using Eq. I-6 with the
replacement of b0 (isothermal sound speed) with <, (adiabatic sound
speed). The separation between the lines indicates the limitations of
heat transfer effects on the phase speed. Although the range bars
appear to indicate greater error in Fig. IV-6 than in Fig. IV-7, the
largest error, in each case, is approximately *20%.

We now discuss some of the limitations of these propagation
measurement results. As the porosity is reduced the high frequency
attenuation increases drastically, the coherence between the source and
remote microphone signals is reduced, and the veracity of the data
becomes questionable. The error starts in both the phase speed and
attenuation data for P=0.875 and £> 3 kHz. For p=0.809 we have not
included the f> 4 kHz data, because the low coherence and the large
oscillations in the data lead to meaningless results.

As in the low frequency attenuation results, the low frequency
phase speed results deviate from predictions at low porosities. 1In the
low frequency case, the coherence between the signals is not reduced as
much as at high frequencies. The data deviations in Figs. IV-6 and

IV-7 appear to be contradictory. The attenuation increase indicates
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that the phase speed should be slower, not faster than the theory pre-
dicts. The phase speed data cannot be explained by a flanking path,
because then the attenuation would be less than theory predicts. The
low frequency, low porosity deviations from theory may be caused by a
failure in the theory or in the measurement procedure. The deviation in
question has not been resolved here. The propagation test results pre-
sented in Subsections 2 and 3 are at 1 kHz or above; the low frequency
deviations do not influence other results in this study.

In Fig. IV-8 the relative sound pressure levels of three low
intensity tone bursts of 1, 2, and 3 kHz are plotted versﬁs‘microphone
separation distance. The material is batted Kevlar 29, of porosities
0.980 and 0.809.7 The straight lines are computed by the average
measured attenuation values (indicated by the symbols in Fig. IV-6). Up
to a distance of 10 cm the Fig. IV-8 data confirm the data in Fig. IV-6
and show the materials to be homogeneous. At 20 cm the attenuation
appears to be less than implied by Fig. IV-6, This reduced attenuation
could be caused by one or more mechanisms, material inhomogeneity, tube
wall vibrations, or a flanking path between the material and the tube
 wall. Although several attempts (microphone vibration isclation and
material repacking) were made to solve this problem, the solutions were
unsuccessful. Nonuniform material packing is the most likely cause to
the deviation.

The other material tested was the Blachford Acoustical Foam
(BAF). The foam was cut into a long strip of square cross section and

pulled into the tube. The predicted and measured attenuations plotted
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in Fig. IV-9 versus frequency show good agreement up to about 4 kHz.
The same high frequency attenuation rise was seen in Fig. IV-6 for the
porosity 0.980. 1In Fig., IV-9 the data rises to a peak and the intro-
duction of a cross-mode propagating in the material may be causing this
extra attenuation.

The predicted and measured phase speeds plotted in Fig. IV-10
show little agreement. The predicted phase speed is 40-70% too high at
frequencies above | kHz. This material is a partially reticulated foam.
The structure that dc flow encounters is much different than that which
ac flow encounters, and, for partially reticulated foam materials, the
dc flow resistance model is inadequate for calculating B or CPH'
Zwikker and Kosten [ 88] discuss some of the effects a partially reticu-
lated foam will have on both dc and acoustic flow. Another theory,
such as Zarek's [ 82], Beranek's [ 8], or Zwikker and Kosten's [ 88],
might predict the propagation properties of a partially reticulated
foam with more accuracy than the present model. Unfortunately, in
each of the cited theories, both the flexibility and the structure
factor of the material must be determined, and these two factors may
have different meaning at high-intensities. Taking these variables
into account would also make the perturbation solution of Chapter II
even more complicated. Thus, a partially reticulated foam is found to
be an inapplicable case for use of the dc flow resistance theory.
Because the relative nonlinearity of this material is so large, the
material is used throughout the rest of this chapter as a comparator

to the relatively linear materials.
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As with the batted Kevlar 29, we want to determine how
homogeneous the BAF is. 1In Fig. IV-11 the relative sound pressure
levels of 1, 2, and 3 kHz low-intensity tone bursts in BAF are plotted
versus microphone separation distance. In this material there is some
deviation from the average attenuation, but it is not as large as
found in the Kevlar material.

In some frequency regions the measured attenuation and phase
speed values diverge from the predicted values. If the basic model is
valid, that is, if the attenuation 1s due to the material flow resisti-
vity, agreementrbetween theory and experiment may be obtained by using
an acoustic flow resistivity. We measure the acoustic flow resiétivity
by using the attenuation data and Eq. I-4 to compute o. The values of
o are calculated by using the average of the calculations from the
Fig. IV-6 attenuation results at 1, 2, and 3 kHz. The average values
(@ and standard deviations are plotted versus porosity in Fig. IV-12.
Equation I-12 was used to generate the curve in the figure. The con-
stant, g= 0.079, was chosen for a best Chi-squared fit to the data. For
Kevlar flow resistivity values not meashred,"Eq. I-12 was used to cal-
culate o in the remainder of this study.

We made the above calculations for the BAF acoustic flow
resistivity at 1, 2, and 3 kHz and founa no change between the average
dc flow resistivity value and the specific BAF sample used in ﬁ%e

propagation tests (see Fig. IV-9).
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2. Excess Attenuation and Saturatilon

In Section I-C-1 both excess attenuation and saturation
have been shown to occur in both water [76] and air [80,81] for
initially sinusocidal waves. In Section II-F-2 a model was developed
for use in describing excess attenuation and saturation. In this sec-
tion we present data on saturation and determine values for the nonlin-
earity parameter T. The test method was described in Section III-D-2.

In fitting Eq. II-77 to the saturation data, we set the value
of a so that Eq. II-77 predicts a data point in the linear region and
then set T so that Eq. II-77 predicts the highest level data point.
Saturation data was taken at a variety of porosities (0.980, 0.956,
0.916, 0.895, 0.875, and 0.809), frequencies (1, 2, and 3 kHz) and
microphone separation distances (1-20 cm). For P<0.916 the results
were not useable because of noise levels at the remote microphone. For
Pz_0.916 and several microphone separation distances the value of T
was found to be constant with porosity changes. Approximate values of
T at frequencies of 1, 2, and 3 kHz are listed for two materials in
Table IV-2. A 1 kHz value of T for the BAF could not be determined from
the experimental data because, for a 1 kHz wave in BAF, T appears to be
dependent on sound level. This dependence is discussed more in Subsec-
tion 3. Given these values of T, Eq. II-77 fits almost all the data to
within *0.5 dB. The excellent fit is 1llustrated in Fig. IV-13, which
shows the approach to saturation of three separate fundamentals for
batted Kevlar 29 (P=0,980). 1In each case, deviation from linear

behavior begins to occur in the range of 140-150 dB source level.
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TABLE IV-2
EXPERIMENTALLY DETERMINED VALUES OF THE NONLINEARITY

PARAMETER T FOR BATTED KEVLAR 29 AND BLACHFORD ACOUSTICAL FOAM

MATERTAL T, 1 kHz T, 2 kHz T, 3 kHz
Batted Kevlar 29 388 248 228
Blachford Acoustical XX 83.6 73.2

Foam (BAF)
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The corresponding particle velocity amplitude range 0.7-2.0 @/s is
the same range at which the dc flow resistivity begins to deviate from
linear behavior.

In the dc¢ flow resistivity tests the BAF had the lowest
nonlinearity threshold. On the basis of the results for batted Kevlar,
one would expect BAF to have a correspondingly low threshold for extra
attenuation. The expectation is fulfilled as Fig. IV-14, which gives
data for two fundamental frequency components, shows. The deviation
from linear behavior is much larger than for the Kevlar. The deviation

starts at about 120 dB, or about 0.07 m/s in particle velocity ampli-

tude, This amplitude also marks the onset of nonlinearity in the dc

flow resistivity tests,

These experiments demonstrate that the value of T depends on
two factors, the dc nonlinearity of the material and the frequency of
the propagating sound. In Subsection 3 we will find that, up to 172 dB,
shocks do not form in initially sinusoidal waves propagating in bulk
porous materials. Although shocks do not form, the equation governing
the fundamental component amplitude attenuation is of the same form as
for when shocks form in air. 1In both cases the attenuation is governed
by an equation of the form of Eq. II-78.

The plot in Fig. IV-15 indicates that the apparent functional

5 0.4

relation for T is inversely proportional to (f)o' and (n/o) We

find that an approximate relation is

T = 6400(f)‘0-5(%)0-4 (IV-1)
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An exact relation would be ill defined by these few tests and more
extensive tests are called for before a good empirical relationship
can be defined.

Equation II-77 and the values of T are used in the next part
of this section to predict propagation of the fundamental component at
high intensities.

3. Propagation at High Intensities

In this section we present comparisons of measured and
predicted propagation for intense sound in porous materials. The
propagation explored in this section is in both BAF and batted Kevlar
29. Tone bursts of 1, 2, and 3 kHz were used to determine the material
properties., The test method was described in Sectioﬁ ITI-D-2.

Although propagation measurements were made onmany porosities of batted
Kevlar, only two representative data sets are presented here and com-
pared to the theories. We find that when the perturbation solution is
compared to the data, the solution does not adequately describe the
propagation of intense waves in a porous material and reasons for this
discrepancy are discussed. 1In addition, the impedance and saturation
models are compared to the data. These models show the excess attenua-
tion of the fundamental, but do not address the problem of harmonic
component generation.

Propagation measurements were made with batted Kevlar 29 at
a variety of porosities (0.980, 0.956, 0.916, 0.895, 0.875, and 0.809).
The results show general tféﬁd;;héﬁich we illustrate here by presenting

1 kHz results at only two porosities (0.980 and 0.809). The extra
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attenuation showed that the Kevlar 29 behaves linearly for sounds
below 140 dB;r The predicted and measured sound levels of an intense
(162.4 dB)1 kHz tone burst propagating through Kevlar 29 (P=0.980) are
shown in Fig. IV-16. The predictions are made from a combination of
Eqs. TI-52 and ITI-61 in Eq. II-35a (Program PERT4PD). Although the
first four harmonics are accounted for in this solution, only three
appear in the figure. The 4 kHz component level is less than 112 dB.
The prediction does not show the excess attenuation that is found in
the measured data; the computed fundamental component behaves as a
small signal. The first two harmonic components are accounted for

at the sourcermicrophone (0 ecm). The presence of the third harmonic
component is not accounted for at the source microphone. The data
points have been corrected for inhomogeneous material effects. The
corrections are given by the differences found between data points and
theory in Fig. IV-7.

The data for the measured harmonic components do not follow

the theoretical curves. The 1 kHz component attenuates in a nonlinear

fashion. The initial attenuation is larger than linear. The attenua-

tion approaches the linear value as the sound level decreases. The

| 2 and 3 kHz components are also attenuated in a nonlinear fashion.
The 2 kHz component has a rapid initial attenuation which is reduced

with distance. The 3 kHz component increases in level at the 2 and

5 cm positions, but i1s suddenly attenuated between 5 and 11 cm. These
results indicate interaction between the components which is unex-

H plained by the theory. The discrepancies méy be caused by one or more
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factors. First, ;he presence and relative phasesrqﬁﬂthe higher fre-
quency harmonic compbnenté ﬁay influence the lower freqdency components
more than expected. Second, the perturbation may have to be performed to
higher orders to show enough excess attenuation. Third, the definition
of nonlinear behavior may be ill defined by simply using the dc flow
resistivity test results; a better definition may be needed. Finally,
perturbation may be inappropriate for determining the propagation of
very intense sound in a porous material. We found in Section IV-B-l
that for small signals the perturbation theory and measurement results
were in agreement. Until harmonic generation by and excess attenuation
of the fundamental is encountered, the perturbation theory works well in
predicting the attenuation (below about 140 dB).

We now consider how well the perturbation theory predicts the
attenuation of sound for materials of low porosities. 1In Table IV-1 we
found that the relative nonlinearity of the material n/o is independent
of the porosity. The resistivity and attenuation are dependent on the

"porosity. At low porosities G- 0 (Eq. II-81) and the nonlinearity is
overshadowed by the large attenuation. In Fig. IV-17 the perturbation
solution and data are presented for batted Kevlar 29 P=0.809. Here
there is very little excess attenuation; theory and experiment agree.
The 2 kHz component shows linear attenuation between the two data
points. A small ri;e is found in the predicted 2 kHz ievel. The dis-
crepancy between data and theory here may be caused by lack of initial

phase information. Changing the phase in the computer program changed

the generation and attenuation of the 2 kHz component. The phase in
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Fig. IV-17 was set to zero. For porosities between the two examples,
we found a transition from some excess attenuation at high porosities

to little excess attenuation at low porosities.

We now use test results to verify the two attenuation models
presented in Section II-F. We use the values of the nonlinearity param-
eter T from Section IV-B-2 and the values of the relative nonlinearity
n/o from Section IV-A-1., The acoustically determined flow resistivity
values are taken from Section IV-B-1. We first consider the 1 kHz
Kevlar data and then the 1 kHz BAF data. We find that the measure-
ments and predictions agree for the Kevlar, but there are some discre-
pancies for the BAF.

In Fig. IV-18 the measured and predicted attenuations of a
1 kHz, 162.4 dB, wave are plotted versus distance. This is the
same data as used in Fig. IV-16. The solid line indicates the small-
signal attenuation. The dashed line is a plot of Eq. II-77, the
excess attenuation model and the dotted line is a plot of the result
of using Eq. II-70, the impedance model. The excess attenuation model
fits the data the best. The impedance model predicts too much excess
attenuation, a fact that indicates that, for the impedance approxima-
tion the values of n/o derived in Section IV-A-1 are too large for the
approximation. The need to reduce the values of n/c is confirmed by the
other comparisons of data with theory, including those of impedance.

Since the predictions based on Eq. I1-79 show good agreement with the
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data, Eq. II-79 will be used in the remainder of this section.
Estimates for the reduction of n/o are made in Section IV-C.

In Fig, IV-19 we continue with the very porous batted Kevlar
29 (P=0.980) and increase the sound level at the source microphone
to 172.3 dB, again for a fundamental freuqency of 1 kHz. The conclu-
sions are the same: predictions based on the use of Eq. II-79 are
in excellent agreement with the data over the region measured.

A similar measurement in low porosity (F=0.809) batted
Kevlar 29 is shown in Fig. IV-20. 1In this case the material nonlin-
earity is not as important as the linear attenuation. Even so, the
agreement between data and predictions based on Eq. II-79 continues
to be excellent. Moreover, the earlier conclusion that T for a given
material is independent of porosity is now seen to hold for porosities
as low as P=0.809.

The same sort of tests were done with BAF. It will be
recalled that a 1 kHz value for T could not be determined from the
saturation measurements, even though the 2 and 3 kHz values could be
determined. From Eq. II-79 we estimate T=115. In the BAF tests
for 162.1 dB presented in Fig. IV-21, we find Tl= 115 to be a good
estimate. In Fig. IV-22 the initial sound level is 173.1 dB. We
find that the model and data do not agree as well. The estimate for
the BAF value T =115 appears to be low. If T is increased to fit the
two cases shown here, the results are T= 143 for Fig. IV-21 and T =200
for Fig. IV-22., In other words, T seems to Have an ampiitude dependence

that was not seen for Kevlar 29. The dependence on amplitude may be
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caused by the complicated material structure which influences the
acoustic flow in a different manner as the intensity increases. For
the 2 and 3 kHz tests amplitude dependence of T was not encountered,

We have seen here that, although the second-order perturba-
tion solution does not work for intense sound propagation in a porous
material, we have two empirical models that do work. Future work in
theoretically defining the parameters T and n/o would be an important
step in being able to predict the propagation of intense sound in
porous materials.

In Section IV-C the acoustic impedance theory and data are
compared. Acoustic values for n/c are found for use in the impedance

relations.
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C. Specific Normal Acoustic Impedance

The acoustic Impedance measurement systems used in this
section are described in Section IITI-E. The measurement systems con-
sist of two low-intensity sound standing wave tubes and one high-
intensity sound traveling wave tube., Measurements were done in these
tubes for a wide range of frequencies, materials, and sound levels.
All the results cannot reasonably be reported here. Tabel IV-3 lists
the range of measurements made on the various materials. Low-frequency
standing wave tube measurements were not made on the batted Kevlar 29
because of our inability to hold the material in place at various
porosities and keep the materiai flush with the tube walls. The
low-intensity measurements are presented and discussed first, then the
high-intensity measurements.

1. Impedance at Low Intensities

ﬁost porous materials are of finite length and the measured
impedance is affected by the material impedance and the sample length.
The impedance data presented here were obtained from both the standing
and traveling wave tubes. In the standing wave tube the sample lengths
were of the order of 7.6 cm. In the traveling wave tube the sample
was long enough to qualify as semi-infinite (a¢L>>1). We use the
traveling wave tube to measure the characteristic impedance of the
material. The test results from the traveling wave tube are presented
first. The flow fesistivity values used in the calculations are taken
from both the dc flow resistivities, described in Section A of this

chapter, and the acoustically determined flow resistivities, described
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ORIGINAL PAGE (S
OF POOR QUALITY

TABLE IV-3

TABULATION OF MEASUREMENTS MADE IN THE THREE
IMPEDANCE TUBES ON THE VARIOUS MATERTIALS

MATERTAL BATTED KEVLAR 29,

POROSITY 0.985 0.980 0.971 0.970 0.958 0.956 0.940 0.93¢ 0,918 0.914 0.895 0.875

TRAVELING 1-4 1-4 1-4 -

WAVE IMPEDANCE ~ - - - = - - - o

TUBE 119-164 121-167 120-167 -

lPREQUENCY, ain) 121-167 121-166 121-164 121-165 .

-(SOUND LEVEL, dB)

LOW FREQUENCY

STANDING WAVE

IMPEDANCE -

TUBE N - - - -
~{FREQUENCY, kHz)

HIGH FREQUENCY

STANDING WAVE

IMPEDANCE TUBE - 0.8-3.5 - 0.8-3.5 - 0.8-3.5 0.8-3.5 - 0.8-3.5
- (FREQUENCY, kHz)

MATERTAL JOHNS-MANVILLE GLOBE-ALBANY SCOTTFELT BLACHFORD
1000 FIBERGLASS KEVLAR ACOUSTICAL
900-2-2 900-2-4 900-2-6 FOAM
POROSITY 0.982 0.940 0.942 0.884 0.852 0.971 '
TRAVELING 1-4 1-4 1-4 1-4 B
WAVE IMPEDANCE - -
TUBE 120-165 120-165 120-165 120-165

-(FREQUENCY, kHz)
-(SOUND LEVEL, dB)

LOW-FREQUENCY
STANDING WAVE
IMPEDANCE TUBE
- (FREQUENCY, kHz)

0.1-1.3 - - - - 0.1-1.3

HIGH-FREQUENCY :

STANDING WAVE
IMPEDANCE TUBE 0.8-3.5 0.8-3.5 0.8-3.5 0.8-3.5 0.8-3.5 0.8-3.5

- (FREQUENCY, kMz) x
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in Section B of this chapter. The characteristic impedance data il-
lustrate how well the low-intensity sound modélfprediétsrthe impedance
for a semi-infinite m?terial. The measurements are combined with the
theory of Chapters I and II to yield a prediction for the impedance of
the finite materials.

For a finite length porous material backed by an infinite im-
pedance a simple relation [88] was féﬁﬁd. This relation, given by
Eq. I-10, links the propagation parameters a and B, the semi-infinite
material impedance, and the finite 1ength material impedance W(L)
together. Equation I-10 can be rewritten in terms of the dimensionless

variable Fl as

ijlL
) (1Iv-2)

ZI(L) = Pl coth (

We note that, when alL>>1, Zl S Fl. As noted in Chapter I, the measure-
ment of the small signal impedance of a semi-infinite material is
equivalent to measuring the propagation parameters.

In Fig. IV-23 the predicted (Eq. II-62) and measured (travel-
ing wave impedance tube) impedance of batted Kevlar 29 (P=0.985, 0.956,
0.914, and 0.875) are plotted versus frequency. TFor the higher poros-
ities the data and theory are in good agreement. At P=0.875, however,
as in the attenuation and phase speed tests, the predictéd values are
larger than the measured values. The acoustically measured resistivity
values are used in the calculations. If the dc flow resistivity values

are used, the predicted curves for the impedance are higher than the curves

in Fig. IV-23. At the higher porosities (P> 0.875) the small discrepancies
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between the measured and predicted values can be accounted for by the small
inaccuracy in measuring the phase (time delay) in the tests.

Samples of 7.7 cm thick batted Kevlar 29 were measured in
the standing wave tube. The data are compared with predictions
based on Eq. IV-2 (acoustic resistivity values) in Fig. IV-24 for
porosities 0.§80 and 6.918. Except for the P=0.918 resistance data,
the égreement'is seen to be good. When the dc flow resistivity values
are used in the predictions, the differences are barely discernable
from the curves in Fig. IV-24, It would appear that for aL< 1, that
the differences between how the flow resistivites are determined
becomes gnimportant and either flow resistivity may be used in the
calculations.

We stated tﬁat when aL > 1, the standing and traveling wave
impedance tube measurements should yield similar results. A comparison
of Figs, IV—23‘and IV-24 indicates that the test results should be
similar for P==0.918, 0.914, where aL>1 and dissimilar for P=0.980,
0.985, where alL< 1. The theoretical curves indicate the above state-
ment to be fairly_reliable. The data for P=0.985, 0.980 disagree in
the manner indicated by thé theory. The reactance data for P==O;918,
0.914 agree, but the resistance data disagree. The resistances
(P=0.918, 0.914) measured in the standing wave tube are between 15 and 35%
higher than both the theory and the resistances measured in the traveling
wave tube. As we shall see, the diségree;ént in the measured resistances
for P=0.918 and 0.914 appears to be more in this specific data than in

the procedure, i.e., we find more consistant agreement in other results.
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In Fig. IV-25 the predicted and measured impedances of
needled and felted Kevlar 29 (P=0.940) for éemi—infinite and 6.2 cm
samples are plotted versus frequency. No propagation tests were made
on this material; the dc flow resistivity was used in the predictions.
The two sets of high-frequency data are in good agreement. The agree-
ment between theory and data is goqd at high frequencies but not at low
frequencies. The discrepancy at l;w frequency is attributed to un-
certainty in locating the impedance tube microphone, a problem discussed
in Chapter III.

In Fig. IV-26 the impedance of a 6.2 cm thick sample of
Johns-Manville 1000 fiberglass (P=0.982) is plotted versus frequency.

The agreement between theory (dec flow resistivity) and data is excel-

lent, significant deviation occurs at only the lowest frequencies.
The next material is Scottfelt 900-Z-2 (P=0.942). The

predicted (dc flow resistivity) and measured impedances of the Scott-

felt for semi-infinite and 7.5 cm samples are plotted versus frequency

in Fig. IV-27. The measured resistances are between 0 and 50% higher
: than predicted. The measured reactances are in good agreement with

; the predictions. 1In both cases the measured results are in excellent

agreement. The agreement between theory and experiment for other
Scottfelt samples 1is similar. The dc flow resistivity was used in
the theoretical predictions. Although agreement between theory and

data is not quite as good as for the fibrous materials, it is still

fairly good. We therefore conclude that the behavior of the fully

reticulated foam is similar to that of a fibrous material. One reason
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this material was not used in the propagation parameter tests is that
many pieces were not uniform in porosity throughout their thickness.
The pieces were, in many cases, less porous at the surface than in the
center. Although the samples chosen for this test were apparently
uniform, invisible nonuniformity may have been one of the causes of

the higher measured than predicted acoustic resistance.

In Fig. IV-28 the predicted and measured impedances of BAF
(P=0.971) for semi-infinite and 7.6 cm samples are plotted versus fre-
! quency. As expected from the propagation test results, the agreement
between the theory and data is not good. The disagreement is much
greater than for Scottfelt, but the trends are similar: The resistive
part is much higher than predicted, whereas the reactive part is close
i to the predicted curve.

By comparing the data and theoretical results in Figs. IV-23
through IV-28, we find that fibrous and fully reticulated foam ma-
terials have similar acoustical properties and may be treated as rigid
materials in the small signal case. On the other hand, the partially
reticulated foam (BAF) has a measured acoustic resistance that is in-
explicably high. As noted in Section IV-B above, cne of the more

general theories (see Chapter 1) may provide a better explanation of

the behavior of a partially reticulated foam.

2. Impedance at High Intensities

Proceeding with the ongoing quest for the definition of a
useful nonlinearity parameter for bulk porous materials leads to the

ad hoc nonlinear impedance model presented in Section II-E. The

model consists of substituting the nonlinear dc¢ flow resistivity
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oli-enl/PV5'for the linear flow resistivity 9 in the definition of

T High-intensity measurements were not made in the standing wave

1
tubes and only the test results for semi-infinite materials are
presented. The materials are the same as those reported in part i.

In making many comparisons between the measured and pre-
dicted nonlinear impedance behavior, we find that use of the dc flow
resistivity in the theoretical calculations leads to an incorrect
prediction of the material nonlinearity. (In the cases where acoustic
resistivity values were used in the predictions, the same ratio of
n/o as found in Table IV-1 was employed to calculate n.) For the
following comparisons the values of n are fit to the data.

In Fig. IV-29 the impedance at 1 kHz of several porosities
(P=0.985, 0.958, and 0.895) is plotted versus sound pressure level.
The relative nonlinearities used in this figure are n/o=0.24, 0.12,
and 0.06, whereas in Table IV-1 we found n/ocx 0.2. As with the ex-
cess attenuation parameter T and its relationship to the attenuation
a, we find that the importance of the nonlinearity apparently de-
creaseé with increased attenuation. |

Neither the resistive nor reactive parts of the impedance
vary in magnitude to any great extent. In each of the three cases the
measured reactive part appears to be slightly more linear in behavior
than the resistive part. This behavior is found to exist at all
porosities and frequencies in this material. r?he asymmetric behavior

is illustrated in Fig. IV-30 where the frequency dependence of the
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batted Kevlar (P=0.936, n/o=0.12) impedance is plotted at two sound
levels. The resistive part of the impedance is accurately predicted
for all frequencies at both low and high intensities. On the other
hand, the reactive part is well predicted at low intensity, but not
at high intensity. Constancy in the reactive part of the impedance
might be caused by fiber motion or by near independence of the
reactance on particle velocity.

In Fig. IV-31 the predicted and measured 1 kHz impedances
of the needled and felted (G-A) Kevlar 29 (P=0.940) and the Scottfelt

(P=0.942) are plotted versus sound pressure level. The porosities of

the materials in this figure are similar to the material in Fig. IV-30,

but the material structures are quite different. The relative non-
linearities fit to the data are n/o=0.08 for the G-A Kevlar and
n/o=0.44 for the Scottfelt.

The last material considered is the BAF, The dc flow
resistivity tests indicated that this material has very nonlinear
behavior, This fact is supported in the plot of the 1 kHz impedance
versus sound level in Fig. IV-32. The relative nonlinearity n/o=1.2
has been fit to the data. The relative nonlinearity is much less than
that listed in Table IV-1 (n/ox4). As opposed to the predictions for
the other materials, the trends of both the resistive and reactive
parts of the impedance are predicted by the nonlinear impedance
equations. Except for the last data point, the resistive part is
slightly more nonlinear than the reactive. A conclusion we draw from
this figure 1s that the impedance model predicts changing reactance

for all materials. In the cases of fibrous or fully reticulated
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foam materials the threshold of nonlinear reactive behavior may be
higher than anticipated by this model.

In Fig, IV-33 the frequency dependence of -BAF at two sound
levels is shown. We again see that the behavior is quite different
from the batted Kevlar (Fig. IV-30) and that while the reactive part
is accurately predicted at both sound levels, the resistive part is
not,

In this ad hoc model, as opposed to the other high intensity
sound models presented, the nonlinear effects are apparently dependent
on the porosity (and, in turn, the attenuation). Tge nonlinearity de-
creases in importance as the porosity decreases, but this has not been
accounted for in the model. A specific relationship between porosity
and relative nonlinearity has not been drawn because the relationship

appears to differ with the material.
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D. Summary

In this chapter the theoretical predictions have been com-
pared with data from experiments for flow resistivity, propagation
parameters, saturation effects, and specific normal acoustic impedance.
Where possible, analysis has been presented with respect to frequency,
sound pressure level, porosity, and material type. The agreement and
disagreement between the data and theory have been discussed. The
major points of the analysis are summarized in this section.

Two conclusions from the dc flow resistivity measurements
(Section A) are drawn. TFirst, each material exhibits nonlinear be-
havior at some threshold particle velocity. The onset of nonlinearity
appears to be related to the material structure. For most fibrous
materials ahd.fully reticulated foams the modified Reynolds number can
be used to estimate the nonlinearity threshold. Second, the dc linear
flow resistivity was found to be a function of the porosity and the
material structure. The exact relationship is unknown, but two pre-
viously derived functions [33,34] Eqs. I-12 and I-17 fit the data for
two materials very well. Although only single porosities of some
materials were measured, the functions should be good descriptors of
the porosity-flow resistivity relationship.

The propagation measurements (Section B) yield important in-
formation about the definition of acoustic material nonlinearity.
Analysis of the small-signal measurements (Part 1) showed that use of
the dc flow resistivity data leads to a small, systematic error in the
prediction of the acoustic propagation parameters of the porous ma-

terials. In the case of the batted Kevlar 29 material, the empirical
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constant g in Eq. I-12 was changed to reflect a more realistic value
for the material properties. No changes were made in the empirical
constants of the other materials.

In Part 2 saturation effects in bulk porous materials were
studied. It was determined that, although shocks never form, at high
intensities the energy loss by the fundamental and the approach to
saturation are governed by the same mathematical relationship in
Eq. II-76 as when shocks do form in waves propagating in fluids. A
Gol'dberg-type number is found in Eq. II-79. From comparison with data
we define values for a porous material nonlinearity parameter T which
is part of the Gol'dberg-type number. The nonlinearity parameter was
found to depend on frequency and relative nonlinearity (material type),
but, at least for batted Kevlar 29, not on porosity. High-intensity
propagation measurements were reported in Part 3 and compared with the
results of the perturbation solution of the conservation equations. At
low intensities the propagation of the sinusoidal waves was found to be
affected by material inhomogeneities. At high intensities the in-
homogeneities affected the results and could be corrected for. At the
higher porosities of Kevlar 29 the second-order perturbation solution
results were found to diverge from the measured data. The theory
predicted too much harmonic generation and not enough excess attenua-
tion of the fundamental. As the porosity was decreased the theory was
found to agree with the data at higher sound levels. The energy lost
by the fundamental to excess attenuation was, apparently, not all

shifted to the higher harmonics, as it is in fluids. It appears that
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shocks do not form in the porous material because the nonlinearity is

a turbulence related phenomena and the transference of energy out of
the fundamental may be done on a broadband as well as a pure tone basis.
There is no experimental basis for this statement, but it is offered as
a possible explanation to where the energy goes.

Section C (impedance measurements) contains important infor-
mation for the definition of the material impedance and support in-
formation on the propagation parameters. In Part 1 the low intensity
theoretical and measured impedance for semi-infinite and finite ma-
terials were found to agree. Since the propagation parameters and the
impedance of semi-infinite materials are directly related to each
other, the agreement between data and theory supports the calculations
and measurements for the propagation parameters.

In Part 2 the ad hoc impedance model was compared to the im-
pedances of several materials at different frequencies and sound levels.
The definition of the material nonlinearity through the use of this
model acts in opposition to the dc flow resistivity model as well as
the saturation model. The nonlinearity defined by the nonlinear impe-
dance model is independent of frequency, but depends upon the porosity
(attenuation) of the material. This result is not surprising because
there is no actual theoretical basis for combining second order effects
in a first order impedance equation. As a rough approximation, the

approach works.
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CHAPTER V

SUMMARY AND CONCLUSIONS

The propagation of intense sound in bulk porous materials
has been studied both theoretically and experimentally. 1In the theo-
retical analysis, rigid material structure has been assumed and the
viscous loss has been defined by the measured dc flow resistivity. 1In
the linear analysis region these analytical assumptions have been
successfully used by others [23,32,33,34,45] to explain their data.

We have also experimentally verified the theory here.

A brief, small signal analysis of oscillatory heat transfer
effects in fibrous porous materials is presented in Appendix A. Heat
transfer effects modify the compressibility of the gas and, thus, the
reference sound speed. The resultant reference sound speed is a
function of fiber size, porosity, and frequency. Because the heat con- 1
ductiVity and heat capacity of porous materials are much larger than
that of the air, the type of material used does not affect the analy-
sis. The heat transfer analysis results are not used directly in the
analysis presented in the main body of this study because the effects
are small relative to the viscous effects. The heat transfer effect
1imits (isothermal and adiabatic sound speéds) are used to indicate
the range of modifications to the viscous theory.

Standard nonlinear acoustic theory has been used as a basis
for understanding the nonlinear effects on intense sound propagating in 1

porous materials. Unfortunately, nonlinear acoustic theory of fluids
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is not directly applicable to intense sound propagation in a porous

material because of the high attenuation and severe dispersion found

in these materials. For sounds propagating in fluids, viscous attenua-

tion and dispersion effects are usually ignored in the pre-shock re-
gion. In bulk porous materials the attenuation and dispersion are so
large that shocks never form. Despite the lack of shock formation,
some of the effects of shock formation on the fundamental component,
excess attenuation and saturation, are found to occur as if shocks had
actually formed.

The experimentally determined approach to saturation is

useful in describing how much of the acoustic energy of intense sound

is propagated, or not propagated, in the porous material. The modeling

of saturation effects was based on knowledge of how the energy is lost
from the fundamental in the sawtooth region of an intense wave in a
fluid [76,80,81]. For the high intensity energy loss an empirical
parameter T has been‘defined and found to depend upon frequency f and
the relative nonlinearity n/o of the material. Because of the limited
data, the exact relationship T(f,n/c) is unknown, but we defined an
approximation. It is possible that T is a function of porosity. The
excess attenuation and saturation experiments might be used to define
the acoustical nonlinearity of the material. Possibiy, a relation-
ship between the saturation defined acoustic nonlinearity and the dc
flow resistivity nonlinearity could be determined. There is probably
a definable function between the two nonlinearities for fibrous mate-

rials or fully reticulated foams, but it may not be reasonable to
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expect such a function for partially reticulated foams. In most
cases we find that the fit of the excess attenuation model to the
data to be excellent.

The perturbation solution of the conservation equations was
derived in an attempt to explain excess attenuation of the fundamental
and harmonic component generation in the measurement results. The
model does not work well at high intensities, porosities, and
nonlinearities. As the porosity is lowered the agreement between
prediction and measurement results is improved.

Success of the excess attenuation model and failure of the
perturbation theory have led us to re-examine how the excess attenua-
tion energy is lost from the fundamental component. Tt appears
that the fundamental component energy is lost not only to the harmo-
nic components, but, because the nonlinearity is a turbulence process,
to broadband random noise. This broadband noise level can be as

‘much as 60-70 dB down from the fundamental component level, thus
making it difficult to measure and not noticeable.

Impedance measurements and predictions for many materials
have been presented to illustrate that the theory is applicable to
most finite and semi-infinite materials at low intensities. These
results are also presented in support of the propagation parameter
measurements, since when oL>> 1, Zl-*Fl and the same results are
obtained for each measurement.

A new experimental technique was developed for use in measur-

ing the impedance of semi-infinite porous materials at high intensities.
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The technique has some advantages over techniques developed by others.
The system 1s simple to make and use and measurements may be made up to
sound levels of 167 dB. As with some other measurement techniques,
shock formation limits the sound level to which this method is appli-
cable.

High-intensity sound measurements were done to evaluate how
well an ad hoc model predicts the effect of sound level on impedance
of a semi-infinite material. For the ad hoc model to be useful, the
relative nonlinearity of the material has to be reduced with reduced
porosity in order to predict the measured values. Because of the
simplicity of the saturation and impedance models, relationships be-
tween the three experimentally deferﬁined ﬁonlinearities would be
useful in acoustical analysis. The determination of these relation-
ships appears to be a fruitful area for future research.

The nonlinear effects described in this study are only
applicable to materials exposed to very intense sound fields; even
the most nonlinearly behaving materials do not exhibit nonlinear
behavior below 120 dB. The most important area for use of these re-
sults is to bulk material use in the sound reduction of jet engine
noise. Materials such as Kevlar 29 have recently been used inside the
Helmholtz resonators that act to absorb sound before it is radiated
out the engine intake. The additional treatment 1s, apparently,
successful in reducing the radiated noise [92]. There may be a com-

bination of effects caused by the porous material that offsets the
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nonlinear behavior of the resonators and increases their effectiveness
relative to resonators without porous materials. For example, the
porous material impedance changes may offset the resonator impedance
changes with sound level. Or, saturation effects may increase the
sound absorption of a sound once it has entered the resonator, not
letting as much sound out as without the porous material.

This study has been successful in describing how sinusoidal
(or almost sinusoidal) waves interact with a bulk porous material.
The results of the study should also be useful i1n laying the ground-
work for future studies in this area. Important topics for future
research would be (1) an investigation of the relationships between the
acoustic nonlinearities as defined in the various theories and experi-
ments In this study and (2) an investigation of the interaction of the

acoustic field and a resonator filled with a fibrous material.
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APPENDIX A

A Theoretical Description of Oscillatory Heat Transfer Effects

on the Propagation of Sound in a Fibrous Porous Material

In this appendix a mathematical model of heat transfer effects
on sound propagation in air saturated fibrous matefial is derived. The
resulting model is good for low-intensity sounds propagating in the air
of the porous material. The conductive heat transfer properties of both
the air and the fibers are accounted for. In the final analysis, the
specific heat transfer properties of the fibers are found to have a
minimal effect on the sound propagation and may be neglected. The heat
transfer primarily affects the sound speed. Its influence on the atten-
uvation is small relative to that of viscosity and is ignored.

The derivation that follows is for cylindrical fibers, and
cylindrical coordinates are used. The heat transfer is assumed to be
due to conduction only, i.e., convective heat transfer and acoustic
streaming (mixing) at high intensities are not accounted for. A primary
effect of convection and streaming would be to raise the heat transfer
rate and thus increase the tendency of the propagation to be isothermal.

Two steps are used in determining the oscillatory heat trans-
fer in fibrous porous materials. First, the general problem of oscilla-
tory heat transfer between the medium and the cylindrical fiber is
determined. Two different boundary conditions at the fiber surface are
considered, and the effects of each on the sound propagation are dis-
cussed. Second, the relation describing the effect of the heat transfer
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on the phase speed is derived. This relation is used in Eq. I-6 for
comparison to the phase speed of Kevlar 29 (P=0.980).
I. Oscillatory Heat Transfer in Cylindrical Coordinates

In this section the oscillatory heat transfer between a single
fiber and the infinite material in which it is immersed is considered.
The general heat transfer equation is presented and solved for two sets ]
of boundary conditions. The two solutions are compared.

A. Equation and General Solution

The governing equation for radial heat conduction in cylin-

drical coordinates is [22]

2
<8T+iﬂ)_ijl=A , (A-1)

or r dr aT ot

where aT==K/pC is the thermal diffusivity, p is the density, C is the
specific heat, k is the thermal conductivity, r is the radial distance ]
from the fiber center, T is the temperature, t is the time, and A is an .
arbitrary driving function. The driving function A may be a function of
the coordinate system and time., The relation «A is the rate of heat
production per unit volume [22]. '
If the driving function A is sinusoidal in time, i.e.,
A=Ae ; (A-2)

then the steady state solution of Eq. A-1 1is [22,52,61]

1/2

3/2) + DKO(ErJ ) - -#9] Jdwt | o (A-3)

T(r,t) = [BJO(Erj
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where Jo is the Bessel function of the first kind of order zero, Ko is
the modified Bessel function of the second kind of order zero, TO is
the reference (ambient) temperature, and £ = %;ﬁ;; . In this presenta-
tion we assume that Ab is constant in the region of interest, either
internal or external to the fiber. Bessel functions with imaginary
arguments can be written in terms of Kelvin functions with real argu-

ments. The relations are [22,52,61]

.3/2y _ .
Jv(ZJ ) = bervz + j beivz (A-4)

and

1/2y v .
K, (ZJ ) = j (kervz + 3 keivz) . (A-5)

Alternately, the Kelvin functions can be written in polar form as

je_(z)
Mv(z)e v = \/Leriz + beiiz (éosev(z) + j sinev(z)) (A-6a)

and

Nv(z)ej¢V(Z) = \/aeriz + keiiz (Cos¢v(z) + 3 sin¢v(z)) . (A-6b)

where

bel 2z
v

ev(z) = arctan (A-7a)

ber z
Vv
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and

kei z
v

¢v(z) = arctan (A-7b)

ker z
v

The equations above are valid in most regions of the coor-
1
dinate system. The Kv(zjé) term becomes infinite at z=0 and the
3/2)
e

I denotes the region intermal to the fiber and the subscript E the

pe—]

term becomes infinite at z==., In what follows, the subscript

surrounding material. The constants B and D are determined by the
boundary conditions, which are discussed next.

Table A-1 is a listing of the thermal properties of various ]
materials, Several of these values are used in following examples.

B. Boundary Conditioms

Two sets of boundary conditions at the fiber surface are con-
sidered here. 1In one case the fiber surface is assumed to be isothermal, }
in the other case non-isothermal. But first, general boundary con-
ditions, that is, conditions at r=0 and « must be stated.

1. General
The boundary condition at the fiber center is that the tem-

perature is finite, or

=0 . (A-8)

The boundary condition at an infinite distance from the fiber is
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TABLE A-1

THERMAL PROPERTIES OF SEVERAL MATERIALS

K o C oy Ea
MATERIAL THERMAL DENSITY SPECTFIC THERMAL £=1000 Hz
CONDUCTIVITY kg/m3 HEAT DIFFUSIVITY a=6-10"6m
W/m°K J/kg®K m?/s
COPPER [50] 390 8900 385 1.1-10‘4 0.045
STEEL [50] 45 7700 450 1.3-10“5 0.13
AIR (300°K) 0.026 1.2 1006 7.5-107 0.10 :
[28] ‘
GLASS [50] 2.5 2600 775 1.2-107° 0.42 3
A
KEVLAR [50] 0.7 1445 1200 4.0-10‘7 0.75
NYLON [50] 0.2 1100 1700 1.1-10‘7 1.5 ,
é TEFLON [50] 0.24 2200 1050 1.0-107’ 1.5 :
: i
§ POLYURETHANE 0.3 1150 1000 2.6°1077 0.93 ;
: [50] R
H 1
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BTE(r,t)

e =0 . (A-9)

2. TIsothermal Surface
The mathematical analysis is simplest if the surface tempera-

ture is constant, i.e., isothermal,

T(a,t) = To s (A-10)

where a is the fiber radius and To is the reference (ambient) tempera-
ture. In this case the external and internal temperature fields are
decoupled. As will be seen, this conditién closely approximates the
actual surface boundary condition of the fiber in air. The isothermal
boundary condition is justified when the fiber has a much greater heat
capacity and thermal diffusivity than the surrounding medium.

3. Oscillating Surface Temperature

The mathermatical analysis is still simple in this case; we

have just shifted the heat source from a volume to a surface. We set
A =0 (A-11)

and

jwt
T, __, = AaeJ , (A-12) 1
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where Qa is defined only at the fiber surface. The internal and ex-
ternal temperature fields are decoupled. This case closely approximates
the temperature oscillations of a fiber in a medium. For more general
conditions the exact boundary conditions must be used. They are dis-
cussed next,
4. Non-Isothermal Surface

In the situation where both the fiber and surrounding medium
specific heats and thermal diffusivities are similar, the isothermal
surface condition cannot be assumed. The heat flux and the temperature
at the fiber surface must be equal at all times. The mathematical de-

finition as to what occurs at the fiber surface is defined by [22,38]

3T (r,t) AT _(r,t)
K —_—.I = K —————E (A_13)
1 ar E or
r=a r=a
and
TI(a,t) = TE(a,t) . (A-14)

With these two sets of boundary conditions any simple heat
conduction problem with a cylinder in a different infinite medium can
be solved. Next the above solgtion and boundary conditions are applied
to the problem at hand.

C. Internal Heat Transfer
Heat transfer within the fiber with an oscillating surface

temperature, Eq. A~12, is described first. In this case only the
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boundary conditions at the center and surface are needed to solve
Eq. A-3 (AO=O). The exact solution is
.3/2

AT (E rj ) .
o _or'l eIt 4T . (A-15)

T (r,t) =—j—“’m o
o

I

Grober [31] derived relations similar to Eq. A-15 for convective heat
transfer to a cylinder. The paper has many theoretical examples and is
quite complete.

We set T0=0 and plot the normalized magnitude of Eq. A-15

(T.-T )/xA versus distance for various values of £a in Fig. A-1. 1If we
o a

I
define the thermal boundary layer thickness as 6=/§E;7;, we find that
E=V/2 /§. The internal thermal boundary layer is illustrated by the
region near the surface which changes its temperature, and, as EIa
becomes larger, the relative boundary layer thickness becomes smaller,
indicating that heat transfer is less important when EIa> 10, The in-
ternal thermal boundary layer of the fiber is significant only when
the frequency is low, the fiber diameter is small, and/or the thermal
diffusivity is large (EIa< 10).

D. External Heat Transfer

Heat transfer outside the fiber with an isothermal surface,

Eq. A-12, is described next. 1In this case only the boundary conditions

at the fiber surface and infinity are needed to solve Eq. (A-3). The

exact solution is
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+ T . (A-16)

We set T0=O and plot the normalized magnitude of Eq. A-16
(TE--TO)/KAo versus distance, for various values of gEa, in Fig. A-2.
The external thermal boundary layer is illustrated here. As shown in
part C, when EEa increases the relative boundary layer thickness de-
creases. The boundary layer thickness is important only when EEa< 1.0.

E. Coupled Heat Transfer

This case is not so simple because the internal and external
fields are coupled. The result is two coupled equations which define
the total thermal field.

Inside the fiber the solution is

: ' .1/2) 3/2
JAOEEKEKO(EEaJ JO(EIrj > ejwt

TI(r,t) = = + To (A-17)
and outside the fiber the solution is
3/2 .1/2
A £k J'(E aj )K (g T ) .
=0 | I T o\"1 o\’E Juwt _
TE(r,t) — |3 + = e + TO , (A-18)

where

E= gEKEKc')<gEajI/Z)Jo(glaj3/2) + jEIKIJé(EIHj3/2>Ko(EE3j1/2) (A-19)
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and the primes denote derivatives with respect to the function argument.

A plot of these equations versus distance, for several values
of EIa and EEa, is shown in Fig. A-3. This plot shows that the iso-
thermal surface boundary conditions are adequate for our purposes. The
dotted curve is for a Kevlar fiber in air and a 0.1 kHz temperature
oscillation. As the frequency increases, the boundary layer becomes
smaller and the fiber-air system becomes more isothermal, as shown by
the solid curve. The dashed curve indicates what the temperature oscil-
lations would be for two materials of similar properties (a Teflon fiber
inrnylon).

In this section the oscillatory heat transfer in and around a
cylinder hasrbeen studied. For the purposes of our study it has been
shown that the fiber material is inconsequential to the formation of
the thermal boundary layer in air and the isothermal surface boundary

condition can be used in the analysis in part II of this appendix.
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IT. Oscillatory Heat Transfer Effects in an Air Saturated,
Fibrous Porous Material

In the previous analysis the only consideration was the heat
transfer to and from a single fiber in an infinite medium. 1In this
section the conservation of energy equation, which turns out to have
the form of Eq. A-1, is used to study the heat transfer to and from
a single fiber when the temperature oscillation is caused by an acoustic
wave for which A>>a. The results are used to determine the heat
transfer effects on the phase speed and attenuation in a porous mate-
rial. The approach in this section is modeled after an analysis by
Pfreim [63] and restated by Devin [26] on heat transfer effects in
oscillating gas bubbles in water,

In the following, the energy equation is derived and solved,
the sound speed is determined, and then the effects of viscosity and
heat transfer are simply added and a complete small signal solution
obtained.

A. Energy Equation
The process to be described must obey the first law of

thermodynamics, the conservation of energy

dE _dq , dw

dt dt * at (A-20)
where dE/dt is the rate of increase in the internal energy of the gas
per unit volume, dQ/dt is the rate of heat transferred to the gas per
unit volume, and dW/dt is the rate of work dome on the gas per unit

volume. Since the fluid considered here is a perfect gas, the rate of

increase of energy per unit volume is

194



ORIGINAL PAGE IS
OF POOR QUALITY

dE _ daT A-21)
dt pcv dt ? (

where Cv is the specific heat at constant volume. Our analysis is for
small signals and we can set p = e where Po is the ambient density,
and use partial derivatives in Eq. A-21 and the following. The rate
of heat transferred to the gas per unit volume (in cylindrical coordi-
nates) is

ot 2 r or

) ,
3Q _ K[a T, 13T (A-22)
or

The rate of work done on the gas per unit volume is

W _P 3
Frai R (A-23)

where P is the total pressure. The only overt differences between the
above equations and the equations in Devin's analysis [26] are that
Devin was concerned with spherical coordinates and viewed everything on
a per unit mass basis. Equations A-21, A-22, and A-23 are used in Eq.
A-20 to yield the energy equation

) .
5 C 3T _ K[a T + 1 BT] +
o vot 2 r dr

ar

3p -
v . (A-24)

° i

We need to replace the density term with a pressure. The

gas is assumed to be ideal and
P = p(Cp-CV)T , (A-25)

where Cp is the specific heat at constant pressure. If a time
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derivative of Eq. A-25 is taken and Eq. A-25 substituted into the

derivative, the result is

Pdp _dP _ _cy34T -
i I CR L . (A-26)

Substitute Eq. A-26 into Eq. A-24, eliminate like terms, and write the

equation as

2
37T, 13T _ 13T _ _13P (A-27)
2 r dr o,. ot K 3t
or T

Equation A-27 is a general equation applicable to a small
signal acoustic wave in the gas whenever A >> a. Equation A-27 is

equivalent to Eq. A-1, with

A= -(8P/3t)/x . (A-28)
The analysis can probably be performed for waves other than sinusoids,
but, for the analysis here, sinusoids are the only waves considered.
B. General Solution
The solution of Eq. A-27 1is accomplished by assuming that the

acoustic wave is a sinusoid such that

P = Po + pert , (A-29)

where P0 is the ambient pressure, p is the magnitude of the acoustic
pressure, and A>>a. Since X>>a and this is a boundary layer problem,
there is no pressure gradient in the vicinity of the fiber; in other
words the acoustic pressure p is assumed to have no dependence on the

radial distance r. Equation A-27 becomes
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9T, 13T 1 9%T_ _ Jup Jut | (A-30)

If we assume that the fiber temperature remains constant, then Eq. A-16

is used to obtain the solution of Eq. A-30. The solution is

R
2 K (Eri ")

T(r,t) = T_ + £P  J— ejmt . (A-31)
° % K (£al®)

o
This solution is used in the next section to calculate the heat
transfer effects on the sound speed in a fibrous porous material.
C. Heat Transfer Effects on the Phase Speed
Now that the radial dependence of the temperature is known,
the small signal phase speed may be calculated. Since we have losses
caused by heat transfer effects, the phase speed is neither adiabatic

nor isothermal. The phase speed is written as

2 dp
cr ® do . (A-32)

The limitation that the compressions be isentropic has been removed
because the compressions are no longer lossless. From Eq. A-32 the
phase speed can only be calculated if a relation between the pressure
and density can be found. In order to do this the heat transfer
effects are integrated from the fiber surface out to some reference
distance. The specific reference distance is determined later in this
appendix. The volume integration is performed in cylindrical coordi-
nates.

In cylindrical coordinates the specific volume per unit mass

and per unit length of any shell is cylindrical
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1
— = 27rdr (A-33)
Po

and infinitesimal changes in pressure and temperature are written,

respectively, as

dP = pert
(A-34)
and
jot
dT = 8(r)e’” (A-35)
The relation of the thermodynamic states between any two shells is
p P
Z=—2T1 . (A-36)
PorgT,

The above equations are now combined to determine a differen-
tial form of Eq. A-31. Differentiate Eq. A-36 and substitute Eqs. A-33

through A-35 and Eq. A-31 into the differential of Eq. A-36 to obtain

1
jwt K (£rj?)
1 2
) = - —3555——— 1+ (y-1) 1--Ji———j;— dr .. (A-37)
, o K (£ai?)

Integration of Eq. A-37 is accomplished by noting that [52]

X
1 1
xK (lei)dx = - LIK (Xjﬁ)
o o j6 1

1
- xjf(keilx + 3 ket x)
(A-38)

x(kei'x + j kei'x)

The upper limit of integration in r is taken as arbitrary and the exact

value is determined later. After integrating over the volume around
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the fiber and some algebra the resulting equation is

Py Py TP 1_2(y—1)j'%[r1<l(erjl”z) - aK1<£ajl/2)]
%
)

_° (A-39)
e TF, E(rz-aZ) KO(EaJ’

The last step is to take the derivative of this equation and solve for
dP/dp. This result yields
-4 I ’ s
2 YPo | 2(-137 ek (Er3) - aK (€3] [ -1

.= —— 11— . , (A-40)
o £(x - a®)K_(£a3?)

Although desirable, the transform to the time domain could not be
accomplished. Thus, this equation, in its present form, is only good
for single frequencies.

It is important to determine whether the function has the
proper values in the limits of fiber packing. If the fibers are spaced

infinitely far apart, then r-« and

CT = —O 3 (A‘-Al)

which is the square of the adiabatic sound speed.
In the limit in which the fibers are packed as close together
as possible, r+a, and the equation becomes

P

o
N (A-42)

which is the square of the isothermal sound speed.
In a porous material the fibers are packed in a spacing well

between these two extremes. The relative fiber packing is used to
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determine the upper limit of integration. Assume that the fibers are
evenly spaced and parallel, as shown in Fig. A-4. The dotted lines
indicate the radius at which the thermal boundary layers intersect.

The small spaces labeled M indicate the area missed by the integration
(19%), but this area has little effect on the calculated phase speed as
Eq. A-45 is a slowly varying function.

For two cases, P=0.918, the magnitude of the sound speed is
plotted versus frequency in Fig. A-5. Since the largest phase angle of
Eq. A-45 is less than 2°, the phase angle is ignored in further cal-
culations. The magnitude change of the sound speed is found to be a
very slowly varying function of both porosity and frequency. Increase
of the thermal diffusivity will cause the phase speed to approach iso-
thermal. This effect is the same as lowering the frequency, since
E= ﬂ;Z;;. For a constant porosity, reduction of the fiber size causes
the fibers to be more tightly packed, as shown in Fig. A-4 (r=a).
Increased packing density causes a lower phase speed.

It is_now important to compare the heat transfer effects to
the viscous effects in the same porous material. This is the topic of
the next section.

D. Thermoviscous Effects on the Phase Speed

In this section the heat transfer and viscosity effects in a

porous material are combined. Since only low-intensity sound is being

considered in this appendix, a simple replacement of bo by Eq. A-40 in
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FIGURE A4
SKETCH OF THE FIBER ARRANGEMENT IN AN IDEAL POROUS MATERIAL.
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Eq. I-16 is assumed to be valid. The result of the above substitution
plotted versus frequency in Fig. A-6.

In Fig. A-6 the thermoviscous phase speed predictions and
data for Kevlar 29 (P = 0.980) are plotted versus frequency. This

combination works fairly well for the full frequency range.
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ITI. Summary and Conclusions

In this appendix the oscillatory heat transfer effects in fi-
brous porous materials have been determined. The results have been com-
bined with viscous effects and used to predict phase speed in a fibrous
porous material. In the analysis, the fiber type was found to have
minimal effect on the heat transfer boundary layer in air surrounding
the fibers and an isothermal boundary condition is used in predicting
the soundspeed.

As anticipated, the heat transfer effects on the sound speed
are bounded by the isothermal and the adiabatic sound speeds. These
limits encompass a change of about 18% from the adiabatic sound speed.

Because of the complication of using Eq. A-45 in the body of
this dissertation, the limiting cases of the isothermal and adiabatic
sound speeds are used in the low-intensity sound predictions. When
intense sounds propagate through a porous material the acoustic particle
velocity and displacement become large. The large particle displace-
ment causes the heat transfer to be convective, rather than conductive,
and causes acoustic streaming which mixes the fluid. Both of these
effects shift the curves in Fig. A-5 so that, for a given frequency w,
the fluid compressions are more isothermal and the sound speed is
slower. In addition, the isothermal sound speed is used in the high-
intensity sound predictions because of the increased heat transfer and

gas mixing caused by the high particle velocities.
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APPENDIX B

DRAWINGS

Construction drawings of two devices built for the experiments
in this study are presented in this appendix. Figures B-1 through B-3
show the construction drawings for the standing wave tube. Figure B-4
shows the construction drawing for the traveling wave tube.

In Fig. B-1-A the impedance tube, the sample holder, and the
aluminum plug are drawn. In Fig. B-1-B the driver/probe tube adaptor
for the impedance tube is drawn. 1In Fig. B-2 the impedance tube
support/carriage track is drawn. 1In Fig. B-3 the microphone carriage
and microphone holder are drawn.

In Fig. B-4 the traveling wave tube and its accessories are

drawn.

206



O"‘ \"h ,a t\ ; ‘
OF POOR Q‘Jn—i”"

FIT T02.5"0.0.,, PLASTIC TUBE DRILL 135" HOLE,
YT TO 2.0"1.D. PLASTIC TUBE 1.375"%18 THREADS

1.625%

325"

1.625%

1.625" 3.25%

1.625%

3.25

ALUMINUM ADAPTOR, DRIVER AND PROBE TUBE FOR IMPEDANCE TUBE

[: B2 "2 T

ALUMINUM PLUG

TOFIT CUT TO FIT SAMPLE HOLDER
SAMPLE HOLDER 250"

0 A S I RSOSSNy

—1.0"—
C /

]

/ ETTS’ OOONNNNNN
WIRE SCREEN, PLEXIGLASS, 2 oono. PLEXIGLASS, 200"| " ]

0.008 DIA. 5"0.D. 5"0
PIANG WIRE SAMPLE HOLDER IMPEDANCE TUBE

[ RraYs )

" FIGURE B-1 ,
DRAWINGS OF THE ACOUSTIC DRIVER AND PROBE TUBE ADAPTOR, IMPEDANCE
TUBE, AND ALUMINUM TERMINATION FOR THE STANDING WAVE TUBE.
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APPENDIX C

COMPUTER PROGRAMS

Two of the programs used in this study are listed here. A
short description 1s given for each program.
PERT4PD

This interactive program is used td céiculate the propagation
of an initial wave consisting of a fundamental and a second harmonic
component of arbitrary amblitudes and relative phase in a porous
material. The program calculates and plots the sound levels of the
four harmonic components with distance (0-25 cm). The information
needed to use the program is the frequency f, linear flow resistivity
0/415, nonlinear flow resistivity n/415, fundamental component sound

level, porosity P, second harmonic component sound level, and relative

phase ¢. }
PHSPED
This interactive program is used to calculate the heat
transfer effects on the phase spgea of sound in a porous material. The
program calculates and plots the magnitude and phase angle of the phase ]

speed versus frequency. The information needed to use the program is
the thermal conductivity, density, and specific heat of the fibrous

material, the fiber radius, and the half spacing between the fibers.
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ORIGINAL PAGE I3
OF POOR GQUALITY

PROGRAM PERT4PD (INPUT+OUTPUTDATPTS,PLOT,TAPES=PLOT)

HLK (PAD) g-1-82

TH1S PROGRAM 1S USED TO CALCULATE THE AMpL ITUDES OF THE FIRST

FOIIR HARMONIC COMPONENTSs WTTH RESPECT To DISTANCEs FOR AN

ACOUSTIC WAVE TRAVELING IN a BULK POROUS MATERIAL.

THE BAUNDARY CONDITION CONSTSTS OF AN ARRTTRARY COMBINATION

OF THF FIRST AND SECOND HAWRMONICS. DATA FOR THE FIRST FOUR HARMONIC
COMPONENTS ARE PLOYTED. THE IMAGINARY PART OF THE PROPAGATED WAVE
AMPLITUDES ARE PLOTTEC.,

INTEGFR LABX (1) +LARY1(1)sLARY2(1)sMAT (2)

REAL P1P0(1601)+X(1601)9+P2P0(1601)

REAL P1P02(1601)9P3P0(1601).P4P0(1601)

REAL XxD{21)+FND(21)+SAD(21)TRD{21) +FRTH(21)
COMPLEX Q1+02+03+04+U219U2¢4U835U244V],V2

COMPLFX GAMMA] sGAMMAZ2 . JsGAMALC «GAMAZC s GAMMAZ s GAMMAS

SPECIFICATION OF CONSTANTS FOp PROGRAM,

AX|{ EN=8.5

AYLEN=5.0

J=CMPL X {0ey10) : .

C=292, }
RHOO=1.21 .

PI=0,0

LDAT=6LDATPTS

5 CONTINUE
DATA ENTRY

PRINT#,#INPUT NO, POINTS/INCH TO PLOT (180 MAX.1, IOPT #,
READ# NPINCHs IOPT

[ S

PROGRAM INPUT TERMINATION,
IF(NPINCH,EQ.0) STOP

DATA vv = OF DATA LINESs PLOT #TITLE#,POROSITY: DECIMALs SIGMA! LINEAR
COFFFTCIENT OF RESISTIVITY PER RHOO®#C, ETA: NONLINEAR COEFFICIENT OF
RESISTIVITY PFR RHOQ®Cs FReEQUENCY: HERTZ, B: RELATIVE

AMPLTTUDE OF THE SECOND HARMONTC COMPONENT WITH RESPECT

TO THF FUNDAMFNTALe PSI: RE) ATIVE PHASE RETWEEN THE

FUNDAMENTAL AND SECONC HARMONIC COMPONENTS,

READ (LDATs#)NN,MAT (1) +sMAT(2) 9P ,F

IF(ND,EQ.,0) GO TO 500

OMEGA=6.2B831854F

PRINTa.2SIGMA, ETAy PSIt#,
REAU® ,SIGMAWETALPSI

DO 150 JD=14ND
READ(LDAT##) XD(JD) 4FAD(JID) «SNN(JD) 4 TRD(UN) 4FRTH(JD)
1F (JD.GT.1) GO TO 17 |
EPS=z1p*%* ((FND{1)=191.2)/20.)
B=10%#((SND(1)=FND(1))/20.)
~ 7ERO=FND (1)
17 FNp(Jn)==ZERDFND (JD)
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SND (JUN) ==ZERD«SND (JUD)

TRp (Jn)==ZERO+TRD (JD)

FRTH(JD)=*ZERO+FRTH(JC)

IF (SNN(JD) ¢LT.=50.0) SND(JD)=10.0

IF(TRN(JD)Y LT ,=50.0) TRD(JD1=10.0

IF(FRTH(JUD) «LT-50.0) FRTH(JD)=10.0
159 CONTINUE

SIGMA1=415,4S1GMA/ (RHCO®OMEGA)
ETAL=415,2ETA#C/ (RHOO*OMEGA)
GAMMAY=CSORT (1,=-J%51GMAY)
GAMMA?=CSQRT(1,~-J#SIGMAL/2,4)
GAMA1=CSQRT(1,+J8STGMAL)
GAMA2=CSQRT(1,4J#SIGVAL/24)
GAMMA3I=CSQRT (1.~J*SIGFAL1/3,)
GAMMAA=CSQRT (1,=-J*SIGNAL/4 )
NP=NP TNCH#AXLEN
DE|LTAX=25,0%0MEGA/ (NP#100.%C)
SVAL=-1°-“AYLEN
PS1=0,01745%PS1

COMPUTATION OF THE FIRST FOWR HARMONIC COMPONENT AMPITUDES,
WITH RESPECT TO DISTANCE, FnR AN ACOUSTIC WAVE TRAVELIING
IN A RULK PORNUS MATERIAL.

D0 10 JL=1,NP

X(JL)=DELTAX® L

IF (lﬂPToEQ.l’ GO TO 15

1IF (INPT.EQ.0) P1PO(JL)=20.%AL0G10 (CABS (CEXP (~J*GAMMAY®X(JL))))

IF (I0PT.EQ.0 +AND. P1PO(JL)+LT.SVAL) Plpo (JL)=Sval
15 V1=8B#(2.#GAMMA2=GAMALC)

V2=2,8ETA]l=J® (GAMMA] ##2) ® [GAMMA2+GAMALC)

Viz=v]ev2 ,

V2=6,8GAMA]C*GAMMAR® (] ,~GAMALC#GAMMAZ)

Ql=v1/ve

V1=JopTAl=J82 & (SIGMA]+J%2,)8GAMMA]

02=V1/(2.%S1GMAY#GAMMAL)

VI=FETA]*J#GAMMAL# (3,<.#51GMal)

V2=0 ,#GAMMA2 8GAMMAL1® (] ,=GAMMAL #GAMMAZ)

Q3=B#* (2.4GAMMA2+GAMMA]) #V]1/Vv2

V1=(Be®82) ¥ (2.% (GAMMA2H#&R2) #5T1GMAL)

V2sJepTAYl= %4 BGAMMASH (SIGMAL+J%4,)

Q4=z=vieve

V1=CExP(Jo (-GAMMA1®#X U L) +PST))

V2=CEXP {J# (= (2, #GAMMAZ2~GAMATC) #X (JL) *PSI))

u21=tv2-vl)

V1i=CcExP{J®2,.% (~GAMMAZEX (JL)))

V2=CEXP (Js2,. % (=GAMMALEX (JL)))

uz2z2=(v2-Vvl1)

V1=CEXP(JU®(3,% (=GAMMA2®#X (JL)) +PST))

V2=CEXP ()8 (= (2, %GAMMAZ2 +GAMMALl ) #X (JL) *PSI))

U23=(v2-Vl1)

Vi=CEXP(J® (448 (=GAMMAGBRX (JL)) +2.%#PST))

V2=CEXP(J® (4% (~GAMMAZ®X (JL)) +2.#PST))

U24=(v2-Vl1)

V1=CEXP (=JeGAMMAL®X (JL))

Vi=V1+EPS®#Ql1%21

V2=BRCEXP (= % (2, %GAMMA2#X (U1 ) +PST))

P1P02 (JL)=20.#AL0G10(CABS((v1)))

P2P0(JL)=20.#ALOG10 (CABS((Vvp+EPS#Q24U22)))

P3P0 (JL)=30.*ALOG10(CABS((EPS®Q32U23)))

P4PO(JL)=20.%AL0G1 0 (CABS((EPS#QénU24)))
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OF PCK)R (NJALFTY

IF (P1PO2(JL) LT.SVAL) P1Pu2 (JL)=SVAL

IF (P2PO(JL) «LT.SVAL) P2PO(JL)=SVAL

IF (P3P0 (JL) «LT«SVAL) P3PO(4L)=SVAL

IF (P4aPO{JL) «LT.SVAL) P4PO( L) =SVAL
1o COnNIINUE

DO 30 JNzlvkp
X(JN)=X{JUN)®100.*C/OMEGA
30 CONIINUE

Ceeas PLOT THE VALUES.

C

(] o000

(e NeXg]

(g XeKe]

LARX (1) =#X, CM#

LARY1 (1) =#L0G (U1/U0) #
LABY2 (1) =#L 06 (UI/U0) #
XORG=) .0

YORG=2.0
DX=25,0/AXLEN

DY=10.,

BRANCHING FOR PLOTTINGC CHOICES,
PLot! 1l/U0

IF (10PT.EQ.1) GOTO 20

CALL PLTLFN(4LPLOT)
CALL PLTDIM(11.0+B84501194.0)
CALL PLTORG (XORG»YORG)

DRAW AXES ’
CALL OLTAXIS(0e090e09AXLENI0e090,09254091,09LABXs=6459=ely=,l)
CALL PLTAXIS(0e000+094AYLENSIQO,,+=504+04092,5+LABY1410¢59~0ls=0l)
CALL PLTAXIS(Q0eOsAYLEN 9AXLENIO,00040925¢001e09LABXs=6902elv.1)
CALL PLTAXIS(AXLEN+QOeOsAYLENIODe09=5V000,012,59LARY141090401s,1)

PLOT THE DATA,

CALL DLTDATA(XOPIPOQNPQOQOOO-'DXQ'SOQOODYQOOBQZ)
CALL PLTLINE(44259=1e29~0c14)
WRITE(5+100) PsFeSIGMA
CALL PLTEND(11.0+8.5)
20 CONTINUE

PLOT ululo.
CALL PLTLFN(4LPLOT)
CALL pLTDIM(IIDO’SDS’l'kio)
CALL PLTORG(XORGsYORG)

DRAW AXES
CALL PLTAXIS(0«0s0e09AXLENS0a090,09254091.0sLABXs=6950=01s=41)
CALL PLTAXIS(0.050.09AYLENSIQO,+=50,40,092,5+LABY24104S970s19=s1)
CALL DLTAXIS(0.0,AYLE‘N'AXLI’_NQO.DQOUOOZSOHQ1.09LABX9-6'00Q"Ql)
CALL PLTAXIS(AXLENvO-OcAYLtN990.Oc-50.-O.O'Z.SOLABY2|10900-l'.l)
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65
75

100
200
300
400

Soo

CALL
CALL
CALL
CaLL
CALL
CALL

ORIQINAL PAGE

T

OF POOR QUIALTY

DLTDATA(x.PlPOZthvOoU.O.nX.-50.0.DY..08;2)
PLTDATA (X ¢P2PO4NFP40+0+s0sDX9=50,00DY,,08,49)
PLTDATA(XvP3PO'NP0000vn|DX9-50.OvDY..0894)
PLTOATA (X sP4POsNP+s0+0+09DX9=50,0+DY,,08,8)
PLTDATA(XDsFNDoNCs=197¢0,40X9=50,09DY20.16+3)
PLTDATA(XDsSNDyNC9=195¢044DX9=50,09NY20.16+3)

IF(TRN(1)«GT.10.0) GO TO 65

CALL

PLTDATA(XDsTRDeNCs=199¢0¢+DXe=50409NY20,1693)

IF(FRTH(1).,G6T.0.0) GO TO 75

CALL
CALL

PLTDATA (XDsFRTHeND s =1¢1190¢9sDX9=50e04DY30016¢3)
PLTLINE(4.25+=0¢99~0s14)

WRITE (5+200) P+Fs2ERO

‘CALL

PLTLINE(4.25+=139=0.14)

WRITE (59300) SIGMASETA

CaLL

pLTLINE(boZSO-IOEO-()olb)

WRITE(S+400) RePSI
CALL PLTEND(1]098.5)

PLOT LABELING FOR INPLUT PARAMETERS.,

FORMAT (#P
FORMAT (2P

2,F9,342 F
#4F9.342 F

2,F9,3,2# SIGMA = 2,F9,3)
#,F9.,3,# SPL = #,F9.3)

| 1]

FORMAT (2SIGMA = #4,F9.34% ETA = #4F9.3)
FORMAT(#B = #,F9,3+# PSI = #,F9,3)
GOTO &

PRINT®¢MAT (1) 4MAT (2)9# SAVE PLOTS?

END
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CRiGHifL FASE ¥
OF POOR QJA‘J Y

PROGRAM PHSPEN (INPUT+OUTPUT«PLOTQUTTAPE2=0UTsTAPES=PLOT)
COMPLEX C2S+C2S14C2SCaveViev2yv3

INTEGFR LABX(2)4sLABY(2)eLABY2(2}

REAL £2SM{1701)+LOGF{1701)sPHASE(1701)+F ,RERJAEPNLF+KERALKEIAY
L KERDAWKE IDAYKERDR +KETURIKIWPIWCPI

OO0

INITIALIZE VARIARLES
GAMMA=1+402
ALPHAF=2.216E=5
REPI=SQRT(2.%3,1415927/ALPHAE)
AEP1=REP]

S PRINT#.2ENTER KIs PI» CPI#,
REAV® ,KI4sPIsCPI
IF(PT,EQ.D,0)STOP
PRINTa#ENTER FIBER RADIUSs RADIUSs NC PLOTTER STEPS#,
REAU"A'RIN

REP=RFP1eR

AEP=AFPl#A

DLF=2,/N

ALPRAT=KI/P1/CPI

Alp2SART (2,83,141592T7/ALPHAT) #a
VSR=SART (31.0711/(KI®PI®CP]))
M=Ne ]

C ComPUTE PHASE SPFED.
DO 10 J=1M
LOGF () =24+ (J=]1)#DLF
F=1U,®® (LOGF (1))
RE=REP®SQRT (F)
AE=AEP®*SQRT (F)
Al=ATP®#SQRT (F)
CALL MMKELQ (AE+BER'BEI+KERAWKETAWIER)
CALL MMKELD(AF+BERWREIKERDASYKEIDASIER)
CALL MMKELD(RE+BERIBE1WKERURYKEINDRSIER)
CALL MMKELO(AT+BERAJBETAsXKFRyXKEIZIER)
CALL MMKELD(AYT+BERDASBEIDAXKERXKETIIER)
X]1=HESKEIDR~AF*KEIDA
X2=AEoKERNA~RE®KERDR
C2S1=CMPLX(X]1,4X2)
C2SL=CMPLX (KERAKEIA)
VIi=CMPLX (KERDAWKEIDA)
V2=UMPLX (BERA,BETIA)
V3zCMPLX(BERDA,L,BEIDA)
V=ySReviey2/V3=-Cc2SD
C25=343¢/CSQRT (1 ,=22(CAMMA=) ,)#C251/( (RE#RE=~AERAE)®V))
C2sM({J) =CABS(C25)
PHASE tJ) =ATAN2 (AIMAG(C2S) yRFAL (C25))*180,/3.,1419927

10 CONTINUE

o

C PRINT OUT VALUES,
WRIIE (2+150)
DO 20 Jz1eM
F=l0.e8L0GF ()Y
WRITE (2+%)F+C25M{J) yPFASE ()

20 CONTINUE
150 FORMAT (2138)
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OF POOR QUALITY

C PLOT MAGNITUDE AND PHASE vS. FREQUENCY, '
DATA LABX/2FREQUENCY,#,2 HERTZz/,LABY,/2NORM PHASE#,# SPEEDZ/
DATA LABY2/#PHASE ANGL#s#En/
XORLG=1,0
YORG=?_ ° 0
AXLEN=8.5
AYLEN’S-O
DX=¢,.,/AXLEN
DY=400./AYLEN
DY2=20./AYLEN

CALL PLTLFN(4LPLOT)
CALL PLTDIM({11.098¢51144,0)
CALL PLTORG (XORGsYORG)
C DRAW AXES,
CALL LOGAXIS(0e090¢09AXLENSIQe0+100441000n.9LARXs=164=,1)
CALL PLTAXIS(D«0s009AYLENYIGO 0900440004500 ABYe16929=019=01)
CALL LOGAXIS(0.0sAYLENyAXLENSO,0+100¢910000¢9LABX909=0l)
CALL PLTAXIS(AXLENSQeQsAYLENSO0«090e0s1e0oel sl ABYs090selv,1)

c
CALL PLTDATA(LOGF+C2SM3sMy04092,350Xs0+DYsn,)
CALL PLTLINE(2.0s=1.2y414)
WRIIE(59100)A,R
CALL PLTEND(11,0+8.5)
c
C PLOT PHASF ANGLE,

CALL PLTLFN{4LPLOT)
CALL PLTDIM{11.098.501+4.0)
CALL PLTORG (XORGyYORG)
C DRAW AXES.
CALL tOGAXIS(0¢0+0¢09AXLENYO0a0s10+910000,4LABXI=169=,1)
CALL PLTAXIS(0e090¢09AYLENIGO 09=1049100419LABY2311929"6¢l9=e])
CALL LOGAXIS{QeOsAYLENyAXLENIU,0410,210000e9LABXy0r=41)
CALL PLTAXIS(AXLENYO«0sAYLENIG0«09=1VeslnavleyLABY240+00010.])

C
CALL pLTDATA(LOGFQPHASE’M'UQO|1-gDXo'lOc.DYZOOOO)
CALL PLTEND(11.04845)
(o
C
GOY0 §
C
i 100 FORMAT (#A=24E9,3410X9#RT#9EG.3)
- END
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